These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34582870)

  • 1. Exploring the pathways towards the mitigation of the environmental impacts of food consumption.
    Osei-Owusu AK; Towa E; Thomsen M
    Sci Total Environ; 2022 Feb; 806(Pt 2):150528. PubMed ID: 34582870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential Energy and Environmental Footprint Savings from Reducing Food Loss and Waste in Europe: A Scenario-Based Multiregional Input-Output Analysis.
    Osei-Owusu AK; Read QD; Thomsen M
    Environ Sci Technol; 2023 Oct; 57(43):16296-16308. PubMed ID: 37863476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain.
    Porter SD; Reay DS; Higgins P; Bomberg E
    Sci Total Environ; 2016 Nov; 571():721-9. PubMed ID: 27432722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems.
    Zhu J; Luo Z; Sun T; Li W; Zhou W; Wang X; Fei X; Tong H; Yin K
    Nat Food; 2023 Mar; 4(3):247-256. PubMed ID: 37118273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data.
    Aleksandrowicz L; Green R; Joy EJM; Harris F; Hillier J; Vetter SH; Smith P; Kulkarni B; Dangour AD; Haines A
    Environ Int; 2019 May; 126():207-215. PubMed ID: 30802638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Healthy diets with reduced environmental impact? - The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines.
    van de Kamp ME; van Dooren C; Hollander A; Geurts M; Brink EJ; van Rossum C; Biesbroek S; de Valk E; Toxopeus IB; Temme EHM
    Food Res Int; 2018 Feb; 104():14-24. PubMed ID: 29433779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A holistic approach to the environmental evaluation of food waste prevention.
    Salemdeeb R; Font Vivanco D; Al-Tabbaa A; Zu Ermgassen EKHJ
    Waste Manag; 2017 Jan; 59():442-450. PubMed ID: 27712945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring greenhouse gas mitigation strategies for agriculture in Africa: The case of Nigeria.
    Dioha MO; Kumar A
    Ambio; 2020 Sep; 49(9):1549-1566. PubMed ID: 31776966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Livestock greenhouse gas emissions and mitigation potential in Europe.
    Bellarby J; Tirado R; Leip A; Weiss F; Lesschen JP; Smith P
    Glob Chang Biol; 2013 Jan; 19(1):3-18. PubMed ID: 23504717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greenhouse gas mitigation potential in smallholder agroecosystem of southern Ethiopia.
    Lemma B; Evangelista PH; Stermer M; Young NE; Milne E; Easter M
    J Environ Manage; 2023 Jan; 325(Pt A):116611. PubMed ID: 36419303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food systems in a zero-deforestation world: Dietary change is more important than intensification for climate targets in 2050.
    Theurl MC; Lauk C; Kalt G; Mayer A; Kaltenegger K; Morais TG; Teixeira RFM; Domingos T; Winiwarter W; Erb KH; Haberl H
    Sci Total Environ; 2020 Sep; 735():139353. PubMed ID: 32474248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land footprint and GHG emissions from global food loss.
    Abbade EB
    J Sci Food Agric; 2023 Jul; 103(9):4430-4440. PubMed ID: 36840425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
    Mohareb EA; Heller MC; Guthrie PM
    Environ Sci Technol; 2018 May; 52(10):5545-5554. PubMed ID: 29717606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The greenhouse gas footprints of China's food production and consumption (1987-2017).
    Zhang H; Xu Y; Lahr ML
    J Environ Manage; 2022 Jan; 301():113934. PubMed ID: 34731952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Livestock greenhouse gas emission and mitigation potential in China.
    He D; Deng X; Wang X; Zhang F
    J Environ Manage; 2023 Dec; 348():119494. PubMed ID: 37924696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging Increases Global Annual Food Greenhouse Gas Emissions up to 300 Million Tonnes by 2100.
    Yin K; Zhao X; Liu Y; Zhu J; Fei X
    Environ Sci Technol; 2024 Apr; 58(13):5784-5795. PubMed ID: 38507561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions.
    Farchi S; De Sario M; Lapucci E; Davoli M; Michelozzi P
    PLoS One; 2017; 12(8):e0182960. PubMed ID: 28813467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.