These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34583035)
1. Functionalizing Ti Yin Z; Lu J; Hong N; Cheng W; Jia P; Wang H; Hu W; Wang B; Song L; Hu Y J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1300-1312. PubMed ID: 34583035 [TBL] [Abstract][Full Text] [Related]
2. Design of copper salt@graphene nanohybrids to accomplish excellent resilience and superior fire safety for flexible polyurethane foam. Jia P; Ma C; Lu J; Yang W; Jiang X; Jiang G; Yin Z; Qiu Y; Qian L; Yu X; Hu Y; Hu W; Wang B J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1205-1218. PubMed ID: 34492459 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical Ti Yin Z; Chu F; Yu B; Wang B; Hu Y J Colloid Interface Sci; 2022 Nov; 626():208-220. PubMed ID: 35797867 [TBL] [Abstract][Full Text] [Related]
4. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam. Jiang Q; Li P; Liu Y; Zhu P Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012407 [TBL] [Abstract][Full Text] [Related]
5. Novel MoS Zhi M; Liu Q; Zhao Y; Gao S; Zhang Z; He Y ACS Omega; 2020 Feb; 5(6):2734-2746. PubMed ID: 32095697 [TBL] [Abstract][Full Text] [Related]
6. Bio-based P-N flame retardant with ZIF-67 in-situ growth on flexible polyurethane foam with excellent fire safety performance. Geng Y; Li R; Zhao Z; Li G; Huang B; Chen X; Jiao C Chemosphere; 2024 Jun; 357():142048. PubMed ID: 38641295 [TBL] [Abstract][Full Text] [Related]
7. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite. Wang H; Liu Q; Li H; Zhang H; Yan S Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904525 [TBL] [Abstract][Full Text] [Related]
8. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. Zhang S; Chu F; Xu Z; Zhou Y; Qiu Y; Qian L; Hu Y; Wang B; Hu W J Colloid Interface Sci; 2022 Jan; 606(Pt 1):768-783. PubMed ID: 34419816 [TBL] [Abstract][Full Text] [Related]
9. MOF-derived 3D petal-like CoNi-LDH array cooperates with MXene to effectively inhibit fire and toxic smoke hazards of FPUF. Zhou Y; Chu F; Ding L; Yang W; Zhang S; Xu Z; Qiu S; Hu W Chemosphere; 2022 Jun; 297():134134. PubMed ID: 35276116 [TBL] [Abstract][Full Text] [Related]
10. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites. Chen H; Wang J; Ni A; Ding A; Han X; Sun Z Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716 [TBL] [Abstract][Full Text] [Related]
11. A biomimetic structured bio-based flame retardant coating on flexible polyurethane foam with low smoke release and antibacterial ability. Meng D; Wang K; Wang W; Sun J; Wang H; Gu X; Zhang S Chemosphere; 2023 Jan; 312(Pt 1):137060. PubMed ID: 36334737 [TBL] [Abstract][Full Text] [Related]
12. High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: Enhanced adsorption, mechanical and fire safety properties. Zhou Y; Qiu S; Chu F; Yang W; Qiu Y; Qian L; Hu W; Song L J Colloid Interface Sci; 2022 Mar; 609():794-806. PubMed ID: 34857378 [TBL] [Abstract][Full Text] [Related]
13. Construction of sustainable and highly efficient fire-protective nanocoatings based on polydopamine and phosphorylated cellulose for flexible polyurethane foam. Ye D; Wang C; Xi J; Li W; Wang J; Miao E; Xing W; Yu B Int J Biol Macromol; 2024 Jun; 272(Pt 1):132639. PubMed ID: 38834116 [TBL] [Abstract][Full Text] [Related]
14. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Nabipour H; Wang X; Song L; Hu Y Carbohydr Polym; 2020 Oct; 246():116641. PubMed ID: 32747276 [TBL] [Abstract][Full Text] [Related]
15. The influence of zinc hydroxystannate on reducing toxic gases (CO, NO(x) and HCN) generation and fire hazards of thermoplastic polyurethane composites. Wang B; Sheng H; Shi Y; Song L; Zhang Y; Hu Y; Hu W J Hazard Mater; 2016 Aug; 314():260-269. PubMed ID: 27136731 [TBL] [Abstract][Full Text] [Related]
16. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. Shi X; Jiang S; Zhu J; Li G; Peng X RSC Adv; 2018 Mar; 8(18):9985-9995. PubMed ID: 35540820 [TBL] [Abstract][Full Text] [Related]
17. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Rao WH; Liao W; Wang H; Zhao HB; Wang YZ J Hazard Mater; 2018 Oct; 360():651-660. PubMed ID: 30153630 [TBL] [Abstract][Full Text] [Related]
18. An intumescent flame-retardant system based on carboxymethyl cellulose for flexible polyurethane foams with outstanding flame retardancy, antibacterial properties, and mechanical properties. Li P; Jiang XC; Song WM; Zhang LY; Xu YJ; Liu Y; Zhu P Int J Biol Macromol; 2023 Jun; 240():124387. PubMed ID: 37040855 [TBL] [Abstract][Full Text] [Related]
19. Investigation of Flame Retardant Flexible Polyurethane Foams Containing DOPO Immobilized Titanium Dioxide Nanoparticles. Dong Q; Chen K; Jin X; Sun S; Tian Y; Wang F; Liu P; Yang M Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960059 [TBL] [Abstract][Full Text] [Related]
20. Metal-organic Framework ZIF-67 Functionalized MXene for Enhancing the Fire Safety of Thermoplastic Polyurethanes. Wan M; Shi C; Qian X; Qin Y; Jing J; Che H Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]