These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Deep Learning-Enhanced Nanopore Sensing of Single-Nanoparticle Translocation Dynamics. Tsutsui M; Takaai T; Yokota K; Kawai T; Washio T Small Methods; 2021 Jul; 5(7):e2100191. PubMed ID: 34928002 [TBL] [Abstract][Full Text] [Related]
4. A Guide to Signal Processing Algorithms for Nanopore Sensors. Wen C; Dematties D; Zhang SL ACS Sens; 2021 Oct; 6(10):3536-3555. PubMed ID: 34601866 [TBL] [Abstract][Full Text] [Related]
5. Procedural Data Processing for Single-Molecule Identification by Nanopore Sensors. Wang Y; Yuan J; Deng H; Zhang Z; Ma QDY; Wu L; Weng L Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551119 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of simulation models to mimic the distortions introduced into squiggles by nanopore sequencers and segmentation algorithms. Smith M; Chan R; Gordon P PLoS One; 2019; 14(7):e0219495. PubMed ID: 31318901 [TBL] [Abstract][Full Text] [Related]
7. Learning Shapelets for Improving Single-Molecule Nanopore Sensing. Wei ZX; Ying YL; Li MY; Yang J; Zhou JL; Wang HF; Yan BY; Long YT Anal Chem; 2019 Aug; 91(15):10033-10039. PubMed ID: 31083925 [TBL] [Abstract][Full Text] [Related]
8. S2Snet: deep learning for low molecular weight RNA identification with nanopore. Guan X; Wang Y; Shao W; Li Z; Huang S; Zhang D Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35368061 [TBL] [Abstract][Full Text] [Related]
9. Understanding and modelling the magnitude of the change in current of nanopore sensors. Tang W; Fried JP; Tilley RD; Gooding JJ Chem Soc Rev; 2022 Jul; 51(14):5757-5776. PubMed ID: 35748606 [TBL] [Abstract][Full Text] [Related]
11. Deep learning for nanopore ionic current blockades. Díaz Carral Á; Ostertag M; Fyta M J Chem Phys; 2021 Jan; 154(4):044111. PubMed ID: 33514094 [TBL] [Abstract][Full Text] [Related]
12. Pulse Signal Analysis Based on Deep Learning Network. E Q Biomed Res Int; 2022; 2022():6256126. PubMed ID: 36158878 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
14. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
15. RUBICON: a framework for designing efficient deep learning-based genomic basecallers. Singh G; Alser M; Denolf K; Firtina C; Khodamoradi A; Cavlak MB; Corporaal H; Mutlu O Genome Biol; 2024 Feb; 25(1):49. PubMed ID: 38365730 [TBL] [Abstract][Full Text] [Related]
16. Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text. Li Z; Yang Z; Shen C; Xu J; Zhang Y; Xu H BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):22. PubMed ID: 30700301 [TBL] [Abstract][Full Text] [Related]
17. Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography. Clark DP; Schwartz FR; Marin D; Ramirez-Giraldo JC; Badea CT Med Phys; 2020 Sep; 47(9):4150-4163. PubMed ID: 32531114 [TBL] [Abstract][Full Text] [Related]
18. [Unsupervised deep learning for identifying the O Guan X; Wang Y; Zhang J; Shao W; Huang S; Zhang D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):139-148. PubMed ID: 35231975 [TBL] [Abstract][Full Text] [Related]
19. Nanopore biphasic-pulse biosensor. Sun H; Yao F; Kang XF Biosens Bioelectron; 2019 Dec; 146():111740. PubMed ID: 31586766 [TBL] [Abstract][Full Text] [Related]
20. Single-aminoacid discrimination in proteins with homogeneous nanopore sensors and neural networks. Rodriguez-Larrea D Biosens Bioelectron; 2021 May; 180():113108. PubMed ID: 33690101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]