These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34584023)

  • 1. Flow visualization and force measurement of the clapping effect in bio-inspired flying robots.
    Balta M; Deb D; Taha HE
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34584023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles.
    Jadhav SS; Lua KB; Tay WB
    Bioinspir Biomim; 2019 Feb; 14(3):036006. PubMed ID: 30721890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrust enhancement and degradation mechanisms due to self-induced vibrations in bio-inspired flying robots.
    Deb D; Huang K; Verma A; Fouda M; Taha HE
    Sci Rep; 2023 Oct; 13(1):18317. PubMed ID: 37880321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butterflies fly using efficient propulsive clap mechanism owing to flexible wings.
    Johansson LC; Henningsson P
    J R Soc Interface; 2021 Jan; 18(174):20200854. PubMed ID: 33468023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical study on the aerodynamic effects of dynamic twisting on forward flight flapping wings.
    Dong Y; Song B; Yang W; Xue D
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The novel aerodynamics of insect flight: applications to micro-air vehicles.
    Ellington CP
    J Exp Biol; 1999 Dec; 202(Pt 23):3439-48. PubMed ID: 10562527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pausing after clap reduces power required to fling wings apart at low Reynolds number.
    Kasoju VT; Santhanakrishnan A
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34034247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
    Hawkes EW; Lentink D
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27707903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling of the performance of insect-inspired passive-pitching flapping wings.
    Sum Wu K; Nowak J; Breuer KS
    J R Soc Interface; 2019 Dec; 16(161):20190609. PubMed ID: 31847758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aeroelastic characterisation of a bio-inspired flapping membrane wing.
    Gehrke A; Richeux J; Uksul E; Mulleners K
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35917821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of insect-inspired wing micro air vehicle.
    Song F; Yan Y; Sun J
    Arthropod Struct Dev; 2023 Jan; 72():101225. PubMed ID: 36464577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.
    Armanini SF; Caetano JV; Croon GC; Visser CC; Mulder M
    Bioinspir Biomim; 2016 Jun; 11(4):046002. PubMed ID: 27359331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics and biomimetics in insect-inspired flight systems.
    Liu H; Ravi S; Kolomenskiy D; Tanaka H
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.