BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34584082)

  • 1. Superlubric polycrystalline graphene interfaces.
    Gao X; Ouyang W; Urbakh M; Hod O
    Nat Commun; 2021 Sep; 12(1):5694. PubMed ID: 34584082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stick-Slip Dynamics of Moiré Superstructures in Polycrystalline 2D Material Interfaces.
    Gao X; Urbakh M; Hod O
    Phys Rev Lett; 2022 Dec; 129(27):276101. PubMed ID: 36638291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study.
    Ying P; Natan A; Hod O; Urbakh M
    ACS Nano; 2024 Apr; 18(14):10133-10141. PubMed ID: 38546136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grain size and hydroxyl-coverage dependent tribology of polycrystalline graphene.
    Chen Y; Wang S; Xie L; Zhu P; Li R; Peng Q
    Nanotechnology; 2019 Sep; 30(38):385701. PubMed ID: 31212265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moiré-Tile Manipulation-Induced Friction Switch of Graphene on a Platinum Surface.
    Liu Z; Vilhena JG; Hinaut A; Scherb S; Luo F; Zhang J; Glatzel T; Gnecco E; Meyer E
    Nano Lett; 2023 May; 23(10):4693-4697. PubMed ID: 36917620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tribological characteristics of few-layer graphene over Ni grain and interface boundaries.
    Tripathi M; Awaja F; Paolicelli G; Bartali R; Iacob E; Valeri S; Ryu S; Signetti S; Speranza G; Pugno NM
    Nanoscale; 2016 Mar; 8(12):6646-58. PubMed ID: 26948836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative Friction Coefficients in Superlubric Graphite-Hexagonal Boron Nitride Heterojunctions.
    Mandelli D; Ouyang W; Hod O; Urbakh M
    Phys Rev Lett; 2019 Feb; 122(7):076102. PubMed ID: 30848642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Effect of Carbon Micro/Nano-Fillers and Surface Patterning on the Superlubric Performance of 3D-Printed Structures.
    Gkougkousi K; Karantzalis AE; Nikolakopoulos PG; Dassios KG
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solids Under Extreme Shear: Friction-Mediated Subsurface Structural Transformations.
    Greiner C; Gagel J; Gumbsch P
    Adv Mater; 2019 Jun; 31(26):e1806705. PubMed ID: 30828903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive-Negative Tunable Coefficients of Friction in Superlubric Contacts.
    Wu Z; Li X; Peng D; Zheng Q
    Phys Rev Lett; 2024 Apr; 132(15):156201. PubMed ID: 38683007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic simulations of the load dependant friction force between silicon tip and diamond substrate.
    Bu H; Chen Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7501-5. PubMed ID: 21137969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity Dependence of Moiré Friction.
    Song Y; Gao X; Hinaut A; Scherb S; Huang S; Glatzel T; Hod O; Urbakh M; Meyer E
    Nano Lett; 2022 Dec; 22(23):9529-9536. PubMed ID: 36449068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size.
    Dietzel D; Brndiar J; Štich I; Schirmeisen A
    ACS Nano; 2017 Aug; 11(8):7642-7647. PubMed ID: 28715171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.