These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 34584158)
1. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN. Ono D; Honma KI; Schmal C; Takumi T; Kawamoto T; Fujimoto K; Kato Y; Honma S Sci Rep; 2021 Sep; 11(1):19240. PubMed ID: 34584158 [TBL] [Abstract][Full Text] [Related]
2. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Ono D; Honma S; Honma K Nat Commun; 2013; 4():1666. PubMed ID: 23575670 [TBL] [Abstract][Full Text] [Related]
4. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark. Ono D; Honma S; Honma K PLoS One; 2013; 8(11):e80615. PubMed ID: 24278295 [TBL] [Abstract][Full Text] [Related]
5. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624 [TBL] [Abstract][Full Text] [Related]
6. Genetic interaction of Per1 and Dec1/2 in the regulation of circadian locomotor activity. Bode B; Shahmoradi A; Taneja R; Rossner MJ; Oster H J Biol Rhythms; 2011 Dec; 26(6):530-40. PubMed ID: 22215611 [TBL] [Abstract][Full Text] [Related]
7. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524 [TBL] [Abstract][Full Text] [Related]
8. DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli. Kato Y; Kawamoto T; Fujimoto K; Noshiro M Curr Top Dev Biol; 2014; 110():339-72. PubMed ID: 25248482 [TBL] [Abstract][Full Text] [Related]
9. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. Ruan GX; Gamble KL; Risner ML; Young LA; McMahon DG PLoS One; 2012; 7(6):e38985. PubMed ID: 22701739 [TBL] [Abstract][Full Text] [Related]
10. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling. Evans JA; Pan H; Liu AC; Welsh DK J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370 [TBL] [Abstract][Full Text] [Related]
11. Tissue-specific disruption of rhythmic expression of Dec1 and Dec2 in clock mutant mice. Noshiro M; Furukawa M; Honma S; Kawamoto T; Hamada T; Honma K; Kato Y J Biol Rhythms; 2005 Oct; 20(5):404-18. PubMed ID: 16267380 [TBL] [Abstract][Full Text] [Related]
12. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice. Noguchi T; Lo K; Diemer T; Welsh DK Neurosci Lett; 2016 Apr; 619():49-53. PubMed ID: 26930624 [TBL] [Abstract][Full Text] [Related]
13. Role of heterozygous and homozygous alleles in cryptochrome-deficient mice. Oda Y; Takasu NN; Ohno SN; Shirakawa Y; Sugimura M; Nakamura TJ; Nakamura W Neurosci Lett; 2022 Feb; 772():136415. PubMed ID: 34954114 [TBL] [Abstract][Full Text] [Related]
14. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits. Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572 [TBL] [Abstract][Full Text] [Related]
15. Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice. Maywood ES; Elliott TS; Patton AP; Krogager TP; Chesham JE; Ernst RJ; Beránek V; Brancaccio M; Chin JW; Hastings MH Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12388-E12397. PubMed ID: 30487216 [TBL] [Abstract][Full Text] [Related]
16. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Lincoln G; Messager S; Andersson H; Hazlerigg D Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13890-5. PubMed ID: 12374857 [TBL] [Abstract][Full Text] [Related]
17. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Vitaterna MH; Selby CP; Todo T; Niwa H; Thompson C; Fruechte EM; Hitomi K; Thresher RJ; Ishikawa T; Miyazaki J; Takahashi JS; Sancar A Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12114-9. PubMed ID: 10518585 [TBL] [Abstract][Full Text] [Related]
18. Photoperiod differentially regulates clock genes' expression in the suprachiasmatic nucleus of Syrian hamster. Tournier BB; Menet JS; Dardente H; Poirel VJ; Malan A; Masson-Pévet M; Pévet P; Vuillez P Neuroscience; 2003; 118(2):317-22. PubMed ID: 12699768 [TBL] [Abstract][Full Text] [Related]
19. Dec1 and Dec2 are regulators of the mammalian molecular clock. Honma S; Kawamoto T; Takagi Y; Fujimoto K; Sato F; Noshiro M; Kato Y; Honma K Nature; 2002 Oct; 419(6909):841-4. PubMed ID: 12397359 [TBL] [Abstract][Full Text] [Related]
20. Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Smyllie NJ; Bagnall J; Koch AA; Niranjan D; Polidarova L; Chesham JE; Chin JW; Partch CL; Loudon ASI; Hastings MH Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]