These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34584162)

  • 1. An adaptive approach to machine learning for compact particle accelerators.
    Scheinker A; Cropp F; Paiagua S; Filippetto D
    Sci Rep; 2021 Sep; 11(1):19187. PubMed ID: 34584162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive autoencoder latent space tuning for more robust machine learning beyond the training set for six-dimensional phase space diagnostics of a time-varying ultrafast electron-diffraction compact accelerator.
    Scheinker A; Cropp F; Filippetto D
    Phys Rev E; 2023 Apr; 107(4-2):045302. PubMed ID: 37198850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning.
    Zhang Z; Yang X; Huang X; Li J; Shaftan T; Smaluk V; Song M; Wan W; Wu L; Zhu Y
    Sci Rep; 2021 Jul; 11(1):13890. PubMed ID: 34230561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations.
    Barragán-Montero AM; Nguyen D; Lu W; Lin MH; Norouzi-Kandalan R; Geets X; Sterpin E; Jiang S
    Med Phys; 2019 Aug; 46(8):3679-3691. PubMed ID: 31102554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.
    Kim J; Kim J; Jang GJ; Lee M
    Neural Netw; 2017 Mar; 87():109-121. PubMed ID: 28110106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software.
    Tabor Z; Kabat D; Waligórski MPR
    Radiat Oncol; 2021 Jun; 16(1):124. PubMed ID: 34187495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volumetric macromolecule identification in cryo-electron tomograms using capsule networks.
    Hajarolasvadi N; Sunkara V; Khavnekar S; Beck F; Brandt R; Baum D
    BMC Bioinformatics; 2022 Aug; 23(1):360. PubMed ID: 36042418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An artificial neural network to model response of a radiotherapy beam monitoring system.
    Cho YB; Farrokhkish M; Norrlinger B; Heaton R; Jaffray D; Islam M
    Med Phys; 2020 Apr; 47(4):1983-1994. PubMed ID: 31955428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning With Context Feedback Loop for Robust Medical Image Segmentation.
    Girum KB; Crehange G; Lalande A
    IEEE Trans Med Imaging; 2021 Jun; 40(6):1542-1554. PubMed ID: 33606627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepDose: Towards a fast dose calculation engine for radiation therapy using deep learning.
    Kontaxis C; Bol GH; Lagendijk JJW; Raaymakers BW
    Phys Med Biol; 2020 Apr; 65(7):075013. PubMed ID: 32053803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Shape Parsers for Constructive Solid Geometry.
    Sharma G; Goyal R; Liu D; Kalogerakis E; Maji S
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2628-2640. PubMed ID: 33315554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder.
    Schuster V; Krogh A
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.