BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34584517)

  • 1. A versatile ceramic capillary membrane reactor system for continuous enzyme-catalyzed hydrolysis.
    Messner L; Antink MH; Guo T; Maas M; Beutel S
    Eng Life Sci; 2021 Sep; 21(8-9):527-538. PubMed ID: 34584517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow rate dependent continuous hydrolysis of protein isolates.
    Sewczyk T; Hoog Antink M; Maas M; Kroll S; Beutel S
    AMB Express; 2018 Feb; 8(1):18. PubMed ID: 29429128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
    Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F
    J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of Fab and Fc using papain immobilized cryogel bioreactor separator system.
    Armutcu C; Çorman ME; Bayram E; Uzun L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Nov; 1158():122396. PubMed ID: 33091678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances in capillary-based immobilized enzyme microreactor based on DNA-directed immobilization].
    Song J; Li M; Shen H; Zhou Z; He W; Su P; Yang Y
    Se Pu; 2020 Oct; 38(10):1206-1210. PubMed ID: 34213117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous hydrolysis of modified wheat gluten in an enzymatic membrane reactor.
    Cui J; Kong X; Hua Y; Zhou H; Liu Q
    J Sci Food Agric; 2011 Dec; 91(15):2799-805. PubMed ID: 21744356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilized biocatalytic process development and potential application in membrane separation: a review.
    Chakraborty S; Rusli H; Nath A; Sikder J; Bhattacharjee C; Curcio S; Drioli E
    Crit Rev Biotechnol; 2016; 36(1):43-58. PubMed ID: 25025272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Hydrolysis of Pectate by Immobilized Endo-polygalacturonase in a Continuously Stirred Tank Reactor.
    Iwasaki K; Inoue M; Matsubara Y
    Biosci Biotechnol Biochem; 1998; 62(2):262-7. PubMed ID: 27388517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous preparation and characterization of immunomodulatory peptides from type II collagen by a novel immobilized enzyme membrane reactor with improved performance.
    Cao H; Cao J; Zhang Y; Ye T; Song Yu J; Yuan M; Xu F; Zheng W; Zuo X
    J Food Biochem; 2019 Jul; 43(7):e12862. PubMed ID: 31353698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramic membrane microfilter as an immobilized enzyme reactor.
    Harrington TJ; Gainer JL; Kirwan DJ
    Enzyme Microb Technol; 1992 Oct; 14(10):813-8. PubMed ID: 1368968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit.
    Shabtai Y; Chaimovitz S; Freeman A; Katchalski-Katzir E; Linder C; Nemas M; Perry M; Kedem O
    Biotechnol Bioeng; 1991 Oct; 38(8):869-76. PubMed ID: 18600843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant and Antibacterial Peptides from Soybean Milk through Enzymatic- and Membrane-Based Technologies.
    Nath A; Kailo GG; Mednyánszky Z; Kiskó G; Csehi B; Pásztorné-Huszár K; Gerencsér-Berta R; Galambos I; Pozsgai E; Bánvölgyi S; Vatai G
    Bioengineering (Basel); 2019 Dec; 7(1):. PubMed ID: 31905687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. III. Utilization of two thermostable beta-glycosidases in a continuous ultrafiltration membrane reactor and galacto-oligosaccharide formation under steady-state conditions.
    Petzelbauer I; Splechtna B; Nidetzky B
    Biotechnol Bioeng; 2002 Feb; 77(4):394-404. PubMed ID: 11787012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid model for an enzymatic reactor: hydrolysis of cheese whey proteins by alcalase immobilized in agarose gel particles.
    Sousa R; Resende MM; Giordano RL; Giordano RC
    Appl Biochem Biotechnol; 2003; 105 -108():413-22. PubMed ID: 12721464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments.
    Korecká L; Bílková Z; Holèapek M; Královský J; Benes M; Lenfeld J; Minc N; Cecal R; Viovy JL; Przybylski M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Aug; 808(1):15-24. PubMed ID: 15236681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis.
    Sakai-Kato K; Kato M; Toyo'oka T
    Anal Chem; 2002 Jul; 74(13):2943-9. PubMed ID: 12141651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of magnetic metal organic frameworks for highly efficient proteolytic digestion used in mass spectrometry-based proteomics.
    Zhai R; Yuan Y; Jiao F; Hao F; Fang X; Zhang Y; Qian X
    Anal Chim Acta; 2017 Nov; 994():19-28. PubMed ID: 29126465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Papain hydrolysis products in four M-IgG subclasses.
    Snigurowicz J; Powiertowska-Rezmer M
    Arch Immunol Ther Exp (Warsz); 1980; 28(2):265-73. PubMed ID: 7447639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process for Continuous Fab Production by Digestion of IgG.
    Ulmer N; Ristanovic D; Morbidelli M
    Biotechnol J; 2019 Oct; 14(10):e1800677. PubMed ID: 31169346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of trypsin onto 1,4-diisothiocyanatobenzene-activated porous glass for microreactor-based peptide mapping by capillary electrophoresis: effect of calcium ions on the immobilization procedure.
    Dartiguenave C; Hamad H; Waldron KC
    Anal Chim Acta; 2010 Mar; 663(2):198-205. PubMed ID: 20206011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.