These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34584636)

  • 1. Natural product scores and fingerprints extracted from artificial neural networks.
    Menke J; Massa J; Koch O
    Comput Struct Biotechnol J; 2021; 19():4593-4602. PubMed ID: 34584636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of molecular fingerprints for exploring the chemical space of natural products.
    Boldini D; Ballabio D; Consonni V; Todeschini R; Grisoni F; Sieber SA
    J Cheminform; 2024 Mar; 16(1):35. PubMed ID: 38528548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches.
    Tian S; Wang J; Li Y; Xu X; Hou T
    Mol Pharm; 2012 Oct; 9(10):2875-86. PubMed ID: 22738405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development.
    Seo M; Shin HK; Myung Y; Hwang S; No KT
    J Cheminform; 2020 Jan; 12(1):6. PubMed ID: 33431009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing structural fingerprints using a literature-based similarity benchmark.
    O'Boyle NM; Sayle RA
    J Cheminform; 2016; 8():36. PubMed ID: 27382417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of pharmacological mechanism of natural product using pathway fingerprints similarity based on "drug-target-pathway" heterogenous network.
    Guo F; Jiang C; Xi Y; Wang D; Zhang Y; Xie N; Guan Y; Zhang F; Yang H
    J Cheminform; 2021 Sep; 13(1):68. PubMed ID: 34544480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Not Drug-like, but Like Drugs: Cnidaria Natural Products.
    Laguionie-Marchais C; Allcock AL; Baker BJ; Conneely EA; Dietrick SG; Kearns F; McKeever K; Young RM; Sierra CA; Soldatou S; Woodcock HL; Johnson MP
    Mar Drugs; 2021 Dec; 20(1):. PubMed ID: 35049897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules.
    Chen Y; Stork C; Hirte S; Kirchmair J
    Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30682850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Task Neural Networks and Molecular Fingerprints to Enhance Compound Identification from LC-MS/MS Data.
    Consonni V; Gosetti F; Termopoli V; Todeschini R; Valsecchi C; Ballabio D
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compression of molecular fingerprints with autoencoder networks.
    Ilnicka A; Schneider G
    Mol Inform; 2023 Jun; 42(6):e2300059. PubMed ID: 37164908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural product-likeness score revisited: an open-source, open-data implementation.
    Jayaseelan KV; Moreno P; Truszkowski A; Ertl P; Steinbeck C
    BMC Bioinformatics; 2012 May; 13():106. PubMed ID: 22607271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latin American databases of natural products: biodiversity and drug discovery against SARS-CoV-2.
    Núñez MJ; Díaz-Eufracio BI; Medina-Franco JL; Olmedo DA
    RSC Adv; 2021 Apr; 11(26):16051-16064. PubMed ID: 35481202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks prediction of the protein-ligand binding affinity with circular fingerprints.
    Yin Z; Song W; Li B; Wang F; Xie L; Xu X
    Technol Health Care; 2023; 31(S1):487-495. PubMed ID: 37066944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MeFSAT: a curated natural product database specific to secondary metabolites of medicinal fungi.
    Vivek-Ananth RP; Sahoo AK; Kumaravel K; Mohanraj K; Samal A
    RSC Adv; 2021 Jan; 11(5):2596-2607. PubMed ID: 35424258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints.
    Chupakhin V; Marcou G; Baskin I; Varnek A; Rognan D
    J Chem Inf Model; 2013 Apr; 53(4):763-72. PubMed ID: 23480697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PrintsGAN: Synthetic Fingerprint Generator.
    Engelsma JJ; Grosz S; Jain AK
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):6111-6124. PubMed ID: 36107899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Novel c-Jun N-Terminal Kinase 1 Inhibitors from Natural Products: Integrating Artificial Intelligence with Structure-Based Virtual Screening and Biological Evaluation.
    Yang R; Zhao G; Yan B
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open-source platform to benchmark fingerprints for ligand-based virtual screening.
    Riniker S; Landrum GA
    J Cheminform; 2013 May; 5(1):26. PubMed ID: 23721588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm.
    Skinnider MA; Dejong CA; Franczak BC; McNicholas PD; Magarvey NA
    J Cheminform; 2017 Aug; 9(1):46. PubMed ID: 29086195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.