These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34584734)

  • 1. Deep learning for improving non-destructive grain mapping in 3D.
    Fang H; Hovad E; Zhang Y; Clemmensen LKH; Ersbøll BK; Juul Jensen D
    IUCrJ; 2021 Sep; 8(Pt 5):719-731. PubMed ID: 34584734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved grain mapping by laboratory X-ray diffraction contrast tomography.
    Fang H; Juul Jensen D; Zhang Y
    IUCrJ; 2021 Jul; 8(Pt 4):559-573. PubMed ID: 34258005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flexible and standalone forward simulation model for laboratory X-ray diffraction contrast tomography.
    Fang H; Juul Jensen D; Zhang Y
    Acta Crystallogr A Found Adv; 2020 Nov; 76(Pt 6):652-663. PubMed ID: 33125349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of grain mapping by diffraction contrast tomography on a conventional laboratory tomography setup with various detectors.
    Fang H; Ludwig W; Lhuissier P
    J Appl Crystallogr; 2023 Jun; 56(Pt 3):810-824. PubMed ID: 37284253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing laboratory X-ray diffraction contrast tomography for grain structure characterization of pure iron.
    Lindkvist A; Fang H; Juul Jensen D; Zhang Y
    J Appl Crystallogr; 2021 Feb; 54(Pt 1):99-110. PubMed ID: 33833643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction algorithms for grain mapping by laboratory X-ray diffraction contrast tomography.
    Fang H; Ludwig W; Lhuissier P
    J Appl Crystallogr; 2022 Dec; 55(Pt 6):1652-1663. PubMed ID: 36570667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
    McDonald SA; Reischig P; Holzner C; Lauridsen EM; Withers PJ; Merkle AP; Feser M
    Sci Rep; 2015 Oct; 5():14665. PubMed ID: 26494523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Laboratory Diffraction Contrast Tomography and Electron Backscatter Diffraction Results: Application to Naturally Occurring Chromites.
    Chen X; Godel B; Verrall M
    Microsc Microanal; 2023 Dec; 29(6):1901-1920. PubMed ID: 38064652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise2Void: unsupervised denoising of PET images.
    Song TA; Yang F; Dutta J
    Phys Med Biol; 2021 Nov; 66(21):. PubMed ID: 34663767
    [No Abstract]   [Full Text] [Related]  

  • 10. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-constraints based deep learning model for automated segmentation and diagnosis of coronary artery disease in X-ray angiographic images.
    Algarni M; Al-Rezqi A; Saeed F; Alsaeedi A; Ghabban F
    PeerJ Comput Sci; 2022; 8():e993. PubMed ID: 35721418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation and counting of wheat spike grains based on deep learning and textural feature.
    Xu X; Geng Q; Gao F; Xiong D; Qiao H; Ma X
    Plant Methods; 2023 Aug; 19(1):77. PubMed ID: 37528413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising.
    Yuan N; Wang L; Ye C; Deng Z; Zhang J; Zhu Y
    Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Solution for Using Neural Networks for Kidney Boundary Extraction in 2D Ultrasound Data.
    Peng T; Gu Y; Ruan SJ; Wu QJ; Cai J
    Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892229
    [No Abstract]   [Full Text] [Related]  

  • 18. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.