These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 34585015)
1. Comparison of ANFIS and ANN modeling for predicting the water absorption behavior of polyurethane treated polyester fabric. Sarkar J; Prottoy ZH; Bari MT; Al Faruque MA Heliyon; 2021 Sep; 7(9):e08000. PubMed ID: 34585015 [TBL] [Abstract][Full Text] [Related]
2. Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production. Taheri E; Amin MM; Fatehizadeh A; Rezakazemi M; Aminabhavi TM J Environ Manage; 2021 Aug; 292():112759. PubMed ID: 33984638 [TBL] [Abstract][Full Text] [Related]
3. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Tabbussum R; Dar AQ Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033 [TBL] [Abstract][Full Text] [Related]
4. Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models. Ghasemi M; Hasani Zonoozi M; Rezania N; Saadatpour M Environ Sci Pollut Res Int; 2022 Oct; 29(48):72839-72852. PubMed ID: 35616836 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Attendance Demand in European Football Games: Comparison of ANFIS, Fuzzy Logic, and ANN. Şahin M; Erol R Comput Intell Neurosci; 2018; 2018():5714872. PubMed ID: 30158960 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance. Sada SO; Ikpeseni SC Heliyon; 2021 Feb; 7(2):e06136. PubMed ID: 33553780 [TBL] [Abstract][Full Text] [Related]
8. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models. Seifi A; Riahi-Madvar H Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Forecasting of Malaria Parasite Using Machine Learning Models: MLR, ANN, ANFIS and Random Forest. Uzun Ozsahin D; Duwa BB; Ozsahin I; Uzun B Diagnostics (Basel); 2024 Feb; 14(4):. PubMed ID: 38396424 [TBL] [Abstract][Full Text] [Related]
10. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Dao DV; Ly HB; Trinh SH; Le TT; Pham BT Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of ANFIS-PSO and ANFIS-GA Models in Predicting Thermophysical Properties of Al Alarifi IM; Nguyen HM; Naderi Bakhtiyari A; Asadi A Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31690020 [TBL] [Abstract][Full Text] [Related]
12. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP. Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756 [TBL] [Abstract][Full Text] [Related]
13. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems. Wang HY; Wen CF; Chiu YH; Lee IN; Kao HY; Lee IC; Ho WH PLoS One; 2013; 8(5):e64995. PubMed ID: 23705023 [TBL] [Abstract][Full Text] [Related]
14. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. Azeez D; Ali MA; Gan KB; Saiboon I Springerplus; 2013; 2():416. PubMed ID: 24052927 [TBL] [Abstract][Full Text] [Related]
15. Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes. Obi CC; Nwabanne JT; Igwegbe CA; Abonyi MN; Umembamalu CJ; Kamuche TT J Environ Manage; 2024 Feb; 353():120161. PubMed ID: 38290261 [TBL] [Abstract][Full Text] [Related]
16. Machine learning accelerated approach to infer nuclear magnetic resonance porosity for a middle eastern carbonate reservoir. Mustafa A; Tariq Z; Mahmoud M; Abdulraheem A Sci Rep; 2023 Mar; 13(1):3956. PubMed ID: 36894553 [TBL] [Abstract][Full Text] [Related]
17. Accurate prediction of dynamic viscosity of polyalpha-olefin boron nitride nanofluids using machine learning. AbuShanab Y; Al-Ammari WA; Gowid S; Sleiti AK Heliyon; 2023 Jun; 9(6):e16716. PubMed ID: 37292319 [TBL] [Abstract][Full Text] [Related]
18. Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network. Hosseinzadeh A; Zhou JL; Altaee A; Baziar M; Li X Bioresour Technol; 2020 Aug; 310():123391. PubMed ID: 32344239 [TBL] [Abstract][Full Text] [Related]
19. Comparison of different heuristic and decomposition techniques for river stage modeling. Seo Y; Kim S; Singh VP Environ Monit Assess; 2018 Jun; 190(7):392. PubMed ID: 29892912 [TBL] [Abstract][Full Text] [Related]
20. Predicting High-Strength Concrete's Compressive Strength: A Comparative Study of Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, and Response Surface Methodology. Li T; Yang J; Jiang P; AlAteah AH; Alsubeai A; Alfares AM; Sufian M Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]