These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 34585151)
1. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids. Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151 [TBL] [Abstract][Full Text] [Related]
2. CRISPR Knock-Ins in Organoids to Track Tumor Cell Subpopulations. Cortina C; Cañellas-Socias A Methods Mol Biol; 2024; 2811():137-154. PubMed ID: 39037655 [TBL] [Abstract][Full Text] [Related]
3. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335 [TBL] [Abstract][Full Text] [Related]
4. Protocol to create isogenic disease models from adult stem cell-derived organoids using next-generation CRISPR tools. Celotti M; Derks LLM; van Es J; van Boxtel R; Clevers H; Geurts MH STAR Protoc; 2024 Sep; 5(3):103189. PubMed ID: 39003744 [TBL] [Abstract][Full Text] [Related]
5. Optimized CRISPR/Cas9-mediated single nucleotide mutation in adherent cancer cell lines. Gao P; Dong X; Wang Y; Wei GH STAR Protoc; 2021 Jun; 2(2):100419. PubMed ID: 33870225 [TBL] [Abstract][Full Text] [Related]
6. Protocol for generating in-frame seamless knockins in Drosophila using the SEED/Harvest technology. Aguilar G; Bauer M; Vigano MA; Guerrero I; Affolter M STAR Protoc; 2024 Sep; 5(3):102932. PubMed ID: 38996063 [TBL] [Abstract][Full Text] [Related]
7. A Simple and Efficient Procedure for Developing Mouse Germline Stem Cell Lines with Gene Knock-in via CRISPR/Cas9 Technology. Wang Y; Hu S; Han C Curr Protoc; 2024 Sep; 4(9):e70002. PubMed ID: 39264143 [TBL] [Abstract][Full Text] [Related]
8. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver. Hendriks D; Artegiani B; Hu H; Chuva de Sousa Lopes S; Clevers H Nat Protoc; 2021 Jan; 16(1):182-217. PubMed ID: 33247284 [TBL] [Abstract][Full Text] [Related]
9. Protocol for efficient CRISPR-Cas9-mediated fluorescent tag knockin in hard-to-transfect erythroid cell lines. Deleuze V; Soler E; Andrieu-Soler C STAR Protoc; 2024 Jun; 5(2):103016. PubMed ID: 38640065 [TBL] [Abstract][Full Text] [Related]
10. Generation and immunofluorescent validation of gene knockouts in adult human colonic organoids using multi-guide RNA CRISPR-Cas9. Chan DKH; Collins SD; Buczacki SJA STAR Protoc; 2023 Mar; 4(1):101978. PubMed ID: 36598849 [TBL] [Abstract][Full Text] [Related]
11. Modeling retinitis pigmentosa through patient-derived retinal organoids. Li YP; Deng WL; Jin ZB STAR Protoc; 2021 Jun; 2(2):100438. PubMed ID: 33899019 [TBL] [Abstract][Full Text] [Related]
12. Generating mutant Li HH; Li JC; Su MP; Liu KL; Chen CH STAR Protoc; 2021 Jun; 2(2):100432. PubMed ID: 33899015 [TBL] [Abstract][Full Text] [Related]
13. A genome editing approach to study cancer stem cells in human tumors. Cortina C; Turon G; Stork D; Hernando-Momblona X; Sevillano M; Aguilera M; Tosi S; Merlos-Suárez A; Stephan-Otto Attolini C; Sancho E; Batlle E EMBO Mol Med; 2017 Jul; 9(7):869-879. PubMed ID: 28468934 [TBL] [Abstract][Full Text] [Related]
14. Optimized protocol to create deletion in adherent cell lines using CRISPR/Cas9 system. Farooq U; Notani D STAR Protoc; 2021 Dec; 2(4):100857. PubMed ID: 34746853 [TBL] [Abstract][Full Text] [Related]
15. Generation of epitope tag knock-in mice with CRISPR-Cas9 to study the function of endogenous proteins. Zhang Z STAR Protoc; 2023 Sep; 4(3):102518. PubMed ID: 37585297 [TBL] [Abstract][Full Text] [Related]
16. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Roper J; Tammela T; Akkad A; Almeqdadi M; Santos SB; Jacks T; Yilmaz ÖH Nat Protoc; 2018 Feb; 13(2):217-234. PubMed ID: 29300388 [TBL] [Abstract][Full Text] [Related]
17. Modeling Human Digestive Diseases With CRISPR-Cas9-Modified Organoids. Fujii M; Clevers H; Sato T Gastroenterology; 2019 Feb; 156(3):562-576. PubMed ID: 30476497 [TBL] [Abstract][Full Text] [Related]
18. Optimized protocols for efficient gene editing in mouse hepatocytes Chen Y; Ding Q STAR Protoc; 2022 Mar; 3(1):101062. PubMed ID: 35005644 [TBL] [Abstract][Full Text] [Related]
20. Protocol for generation and engineering of thyroid cell lineages using CRISPR-Cas9 editing to recapitulate thyroid cancer histotype progression. Pantina VD; Verona F; Turdo A; Veschi V; Modica C; Lo Iacono M; Gaggianesi M; Di Bella S; Todaro M; Di Franco S; Stassi G STAR Protoc; 2024 Sep; 5(3):103263. PubMed ID: 39128010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]