These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 34585151)
21. Protocol for isolation and functional validation of label-retaining quiescent colorectal cancer stem cells from patient-derived organoids for RNA-seq. Regan JL STAR Protoc; 2022 Mar; 3(1):101225. PubMed ID: 35300001 [TBL] [Abstract][Full Text] [Related]
22. Protocol for Efficient CRISPR/Cas9/AAV-Mediated Homologous Recombination in Mouse Hematopoietic Stem and Progenitor Cells. Tran NT; Trombke J; Rajewsky K; Chu VT STAR Protoc; 2020 Jun; 1(1):100028. PubMed ID: 32685932 [TBL] [Abstract][Full Text] [Related]
23. FACS-assisted CRISPR-Cas9 genome editing of human induced pluripotent stem cells. Caillaud A; Lévêque A; Thédrez A; Girardeau A; Canac R; Bray L; Baudic M; Barc J; Gaborit N; Lamirault G; Gardie B; Idriss S; Rimbert A; Le May C; Cariou B; Si-Tayeb K STAR Protoc; 2022 Dec; 3(4):101680. PubMed ID: 36115027 [TBL] [Abstract][Full Text] [Related]
24. CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids. Schwank G; Clevers H Methods Mol Biol; 2016; 1422():3-11. PubMed ID: 27246017 [TBL] [Abstract][Full Text] [Related]
25. Optimized protocol for CRISPR knockout of human iPSC-derived macrophages. Navarro-Guerrero E; Baronio R; Tay C; Knight JC; Ebner DV STAR Protoc; 2024 Mar; 5(1):102903. PubMed ID: 38401123 [TBL] [Abstract][Full Text] [Related]
26. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids. Liu X; Cheng Y; Abraham JM; Wang Z; Wang Z; Ke X; Yan R; Shin EJ; Ngamruengphong S; Khashab MA; Zhang G; McNamara G; Ewald AJ; Lin D; Liu Z; Meltzer SJ Cancer Lett; 2018 Nov; 436():109-118. PubMed ID: 30144514 [TBL] [Abstract][Full Text] [Related]
27. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Takeda H; Kataoka S; Nakayama M; Ali MAE; Oshima H; Yamamoto D; Park JW; Takegami Y; An T; Jenkins NA; Copeland NG; Oshima M Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15635-15644. PubMed ID: 31300537 [TBL] [Abstract][Full Text] [Related]
28. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Kawahara A; Hisano Y; Ota S; Taimatsu K Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373 [TBL] [Abstract][Full Text] [Related]
30. Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids. Martinez-Silgado A; Yousef Yengej FA; Puschhof J; Geurts V; Boot C; Geurts MH; Rookmaaker MB; Verhaar MC; Beumer J; Clevers H STAR Protoc; 2022 Sep; 3(3):101639. PubMed ID: 36042877 [TBL] [Abstract][Full Text] [Related]
31. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids. Ramakrishna G; Babu PE; Singh R; Trehanpati N Hepatol Int; 2021 Dec; 15(6):1309-1317. PubMed ID: 34596864 [TBL] [Abstract][Full Text] [Related]
32. CRISPR-Cas9 Ribonucleoprotein-Mediated Genomic Editing in Primary Innate Immune Cells. Hildreth AD; Riggan L; O'Sullivan TE STAR Protoc; 2020 Dec; 1(3):100113. PubMed ID: 33377009 [TBL] [Abstract][Full Text] [Related]
33. Precise and efficient scarless genome editing in stem cells using CORRECT. Kwart D; Paquet D; Teo S; Tessier-Lavigne M Nat Protoc; 2017 Feb; 12(2):329-354. PubMed ID: 28102837 [TBL] [Abstract][Full Text] [Related]
34. Emerging Prospects for the Study of Colorectal Cancer Stem Cells using Patient-derived Organoids. Ding L; Yang Y; Lu Q; Cao Z; Weygant N Curr Cancer Drug Targets; 2022; 22(3):195-208. PubMed ID: 35078398 [TBL] [Abstract][Full Text] [Related]
35. CRISPR-Cas9-mediated induction of large chromosomal inversions in human bronchial epithelial cells. Angelopoulou A; Papaspyropoulos A; Papantonis A; Gorgoulis VG STAR Protoc; 2022 Jun; 3(2):101257. PubMed ID: 35330963 [TBL] [Abstract][Full Text] [Related]
36. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Miura H; Quadros RM; Gurumurthy CB; Ohtsuka M Nat Protoc; 2018 Jan; 13(1):195-215. PubMed ID: 29266098 [TBL] [Abstract][Full Text] [Related]
37. Efficient CRISPR-Cas9-mediated genome editing for characterization of essential genes in Picchi-Constante GFA; Hiraiwa PM; Marek M; Rogerio VZ; Guerra-Slompo EP; Romier C; Zanchin NIT STAR Protoc; 2022 Jun; 3(2):101324. PubMed ID: 35496799 [TBL] [Abstract][Full Text] [Related]
38. Enhancing targeted transgene knock-in by donor recruitment. Jiao G; Wang C; Chen Y; Dai M; Zhang Y; Li W Cell Prolif; 2022 Jan; 55(1):e13163. PubMed ID: 34854166 [No Abstract] [Full Text] [Related]
39. CRISPR-Cas9-mediated insertion of a short artificial intron for the generation of conditional alleles in mice. Cassidy A; Pelletier S STAR Protoc; 2023 Mar; 4(1):102116. PubMed ID: 36853660 [TBL] [Abstract][Full Text] [Related]
40. One-Step Generation of Seamless Luciferase Gene Knockin Using CRISPR/Cas9 Genome Editing in Human Pluripotent Stem Cells. Li M; Hunt JFVS; Bhattacharyya A; Zhao X Methods Mol Biol; 2019; 1942():61-69. PubMed ID: 30900175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]