These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34585151)

  • 61. Protocol for Genome Editing to Produce Multiple Mutants in Wheat.
    Abe F; Ishida Y; Hisano H; Endo M; Komari T; Toki S; Sato K
    STAR Protoc; 2020 Sep; 1(2):100053. PubMed ID: 33111098
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CRISPR/Cas9 Screen in Gastric Cancer Patient-Derived Organoids Reveals KDM1A-NDRG1 Axis as a Targetable Vulnerability.
    Mircetic J; Camgöz A; Abohawya M; Ding L; Dietzel J; Tobar SG; Paszkowski-Rogacz M; Seidlitz T; Schmäche T; Mehnert MC; Sidorova O; Weitz J; Buchholz F; Stange DE
    Small Methods; 2023 Jun; 7(6):e2201605. PubMed ID: 36908010
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protocol for gene characterization in Aspergillus niger using 5S rRNA-CRISPR-Cas9-mediated Tet-on inducible promoter exchange.
    Zheng X; Cairns T; Zheng P; Meyer V; Sun J
    STAR Protoc; 2022 Dec; 3(4):101838. PubMed ID: 36595926
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells.
    Banan M
    J Biotechnol; 2020 Jan; 308():1-9. PubMed ID: 31751596
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Generation of auxin inducible degron (AID) knock-in cell lines for targeted protein degradation in mammalian cells.
    Adhikari B; Narain A; Wolf E
    STAR Protoc; 2021 Dec; 2(4):100949. PubMed ID: 34849487
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Targeting endogenous proteins for spatial and temporal knockdown using auxin-inducible degron in Caenorhabditis elegans.
    Kurashina M; Mizumoto K
    STAR Protoc; 2023 Mar; 4(1):102028. PubMed ID: 36640369
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genome Editing of Silkworms.
    Tsubota T; Sezutsu H
    Methods Mol Biol; 2017; 1630():205-218. PubMed ID: 28643261
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Repurposing the Native Type I-F CRISPR-Cas System in
    Xu Z; Li Y; Yan A
    STAR Protoc; 2020 Jun; 1(1):100039. PubMed ID: 33111087
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Generation and validation of
    Martens YA; Xu S; Tait R; Li G; Zhao XC; Lu W; Liu CC; Kanekiyo T; Bu G; Zhao J
    STAR Protoc; 2021 Jun; 2(2):100571. PubMed ID: 34151296
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase.
    Ma Y; Yuan J; Chang X
    STAR Protoc; 2020 Jun; 1(1):100005. PubMed ID: 33111067
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Protocol for serial organoid formation assay using primary colorectal cancer tissues to evaluate cancer stem cell activity.
    Bergin CJ; Benoit YD
    STAR Protoc; 2022 Mar; 3(1):101218. PubMed ID: 35265864
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Generation of mouse models carrying B cell restricted single or multiplexed loss-of-function mutations through CRISPR-Cas9 gene editing.
    Ten Hacken E; Gruber M; Hernández-Sánchez M; Hoffmann GB; Baranowski K; Redd RA; Clement K; Livak K; Wu CJ
    STAR Protoc; 2023 Dec; 4(4):102165. PubMed ID: 37729058
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efficient production of large deletion and gene fragment knock-in mice mediated by genome editing with Cas9-mouse Cdt1 in mouse zygotes.
    Mizuno-Iijima S; Ayabe S; Kato K; Matoba S; Ikeda Y; Dinh TTH; Le HT; Suzuki H; Nakashima K; Hasegawa Y; Hamada Y; Tanimoto Y; Daitoku Y; Iki N; Ishida M; Ibrahim EAE; Nakashiba T; Hamada M; Murata K; Miwa Y; Okada-Iwabu M; Iwabu M; Yagami KI; Ogura A; Obata Y; Takahashi S; Mizuno S; Yoshiki A; Sugiyama F
    Methods; 2021 Jul; 191():23-31. PubMed ID: 32334080
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Generation of Knockout Gene-Edited Human Intestinal Organoids.
    Rajendra C; Wald T; Barber K; Spence JR; Fattahi F; Klein OD
    Methods Mol Biol; 2020; 2171():215-230. PubMed ID: 32705644
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing.
    Yao X; Liu Z; Wang X; Wang Y; Nie YH; Lai L; Sun R; Shi L; Sun Q; Yang H
    Cell Res; 2018 Mar; 28(3):379-382. PubMed ID: 29327726
    [No Abstract]   [Full Text] [Related]  

  • 77. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci.
    Tasan I; Sustackova G; Zhang L; Kim J; Sivaguru M; HamediRad M; Wang Y; Genova J; Ma J; Belmont AS; Zhao H
    Nucleic Acids Res; 2018 Sep; 46(17):e100. PubMed ID: 29912475
    [TBL] [Abstract][Full Text] [Related]  

  • 78. CRISPR/Cas9 for cancer research and therapy.
    Zhan T; Rindtorff N; Betge J; Ebert MP; Boutros M
    Semin Cancer Biol; 2019 Apr; 55():106-119. PubMed ID: 29673923
    [TBL] [Abstract][Full Text] [Related]  

  • 79. One-step CRISPR-Cas9 protocol for the generation of plug & play conditional knockouts in
    Yu JJS; Vincent JP; McGough IJ
    STAR Protoc; 2021 Jun; 2(2):100560. PubMed ID: 34095868
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T
    Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.