These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34585197)

  • 21. Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using Central Composite Design.
    Asati A; Satyanarayana GNV; Patel DK
    J Chromatogr A; 2017 Sep; 1513():157-171. PubMed ID: 28735710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Air-assisted in situ deep eutectic solvent decomposition followed by the solidification of floating organic droplets-liquid-liquid microextraction method for extraction of azole antifungal drugs in biological samples prior to high-performance liquid chromatography.
    Ezoddin M; Abdi K; Behnamipour S; Javadi MHS
    J Sep Sci; 2022 May; 45(10):1757-1765. PubMed ID: 35266301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capabilities and limitations of dispersive liquid-liquid microextraction with solidification of floating organic drop for the extraction of organic pollutants from water samples.
    Vera-Avila LE; Rojo-Portillo T; Covarrubias-Herrera R; Peña-Alvarez A
    Anal Chim Acta; 2013 Dec; 805():60-9. PubMed ID: 24296144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hydrophobic deep eutectic solvent based vortex-assisted liquid-liquid microextraction for the determination of formaldehyde from biological and indoor air samples by high performance liquid chromatography.
    Zhang K; Liu C; Li S; Fan J
    J Chromatogr A; 2019 Mar; 1589():39-46. PubMed ID: 30606453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophobicity-switchable deep eutectic solvent-based effervescence-assisted dispersive liquid-liquid microextraction with solidification of floating droplets for HPLC determination of anthraquinones in fried Cassiae semen tea infusions.
    Shi Z; Li X; Tian Y; Fan Y; Liu J; Zhang H
    Anal Methods; 2021 Oct; 13(40):4739-4746. PubMed ID: 34558572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple and highly-available microextraction of benzoic and sorbic acids in beverages and soy sauce samples for high performance liquid chromatography with ultraviolet detection.
    Timofeeva I; Kanashina D; Stepanova K; Bulatov A
    J Chromatogr A; 2019 Mar; 1588():1-7. PubMed ID: 30579637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of new hydrophobic deep eutectic solvents and their application in dispersive liquid-liquid microextraction of Sudan dyes from food samples.
    Ge D; Shan Z; Pang T; Lu X; Wang B
    Anal Bioanal Chem; 2021 Jun; 413(15):3873-3880. PubMed ID: 33963882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hydrophobic deep eutectic solvent-based vortex-assisted dispersive liquid-liquid microextraction combined with HPLC for the determination of nitrite in water and biological samples.
    Zhang K; Li S; Liu C; Wang Q; Wang Y; Fan J
    J Sep Sci; 2019 Jan; 42(2):574-581. PubMed ID: 30370988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents for the simultaneous determination of bisphenols and polycyclic aromatic hydrocarbons in tea infusions via HPLC.
    Zhang K; Wang Y; Li S; Zhu G
    Food Chem; 2021 Jun; 348():129106. PubMed ID: 33516999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction for quantification of niclosamide in real samples.
    Altunay N; Ul Haq H; Castro-Muñoz R
    Food Chem; 2023 Nov; 426():136646. PubMed ID: 37356246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural thymol-based ternary deep eutectic solvents: Application in air-bubble assisted-dispersive liquid-liquid microextraction for the analysis of tetracyclines in water.
    Sereshti H; Abdolhosseini G; Soltani S; Jamshidi F; Nouri N
    J Sep Sci; 2021 Oct; 44(19):3626-3635. PubMed ID: 34355865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An effervescence-assisted switchable fatty acid-based microextraction with solidification of floating organic droplet for determination of fluoroquinolones and tetracyclines in seawater, sediment, and seafood.
    Gao M; Wang J; Song X; He X; Dahlgren RA; Zhang Z; Ru S; Wang X
    Anal Bioanal Chem; 2018 Apr; 410(11):2671-2687. PubMed ID: 29511836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benzoic and sorbic acid in soft drink, milk, ketchup sauce and bread by dispersive liquid-liquid microextraction coupled with HPLC.
    Javanmardi F; Nemati M; Ansarin M; Arefhosseini SR
    Food Addit Contam Part B Surveill; 2015; 8(1):32-9. PubMed ID: 25135626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography.
    Ahmadi-Jouibari T; Fattahi N; Shamsipur M
    J Pharm Biomed Anal; 2014 Jun; 94():145-51. PubMed ID: 24583909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersive liquid-liquid microextraction based on solidification of floating organic drop and high-performance liquid chromatography to the analysis of cocaine's major adulterants in human urine.
    Sena LC; Matos HR; Dórea HS; Pimentel MF; de Santana DC; de Santana FJ
    Toxicology; 2017 Feb; 376():102-112. PubMed ID: 27142991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vortex-assisted deep eutectic solvent reversed-phase liquid-liquid microextraction of triazine herbicides in edible vegetable oils.
    Wang H; Huang X; Qian H; Lu R; Zhang S; Zhou W; Gao H; Xu D
    J Chromatogr A; 2019 Mar; 1589():10-17. PubMed ID: 30591248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaporation-assisted dispersive liquid-liquid microextraction based on the solidification of floating organic droplets for the determination of triazole fungicides in water samples by high-performance liquid chromatography.
    Jing X; Yang L; Zhao W; Wang F; Chen Z; Ma L; Jia L; Wang X
    J Chromatogr A; 2019 Jul; 1597():46-53. PubMed ID: 30926256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of extractables from pharmaceutical packaging materials.
    Sun X; Xing X; Du Z
    Talanta; 2020 Mar; 209():120540. PubMed ID: 31891992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC.
    Yu K; Yue ME; Xu J; Jiang TF
    Food Chem; 2020 Dec; 332():127371. PubMed ID: 32622188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.