These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34585535)

  • 1. Energy-saving H
    Wu D; Hao J; Wang W; Yu Y; Fu XZ; Luo JL
    ChemSusChem; 2021 Dec; 14(24):5450-5459. PubMed ID: 34585535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions.
    Li Y; Wei X; Chen L; Shi J; He M
    Nat Commun; 2019 Nov; 10(1):5335. PubMed ID: 31767871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.
    You B; Jiang N; Liu X; Sun Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9913-7. PubMed ID: 27417546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization.
    You B; Liu X; Jiang N; Sun Y
    J Am Chem Soc; 2016 Oct; 138(41):13639-13646. PubMed ID: 27652996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic Phosphide Heterostructure Coupled with Ultrathin Carbon Layer Boosting Overall Alkaline Water and Seawater Splitting.
    Li J; Hu Y; Huang X; Zhu Y; Wang D
    Small; 2023 May; 19(20):e2206533. PubMed ID: 36793256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value-Added Formate Production from Selective Methanol Oxidation as Anodic Reaction to Enhance Electrochemical Hydrogen Cogeneration.
    Li M; Deng X; Xiang K; Liang Y; Zhao B; Hao J; Luo JL; Fu XZ
    ChemSusChem; 2020 Mar; 13(5):914-921. PubMed ID: 31808618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent H
    Cheng H; Liu Y; Wu J; Zhang Z; Li X; Wang X; Fan HJ
    Small Methods; 2021 Nov; 5(11):e2100871. PubMed ID: 34927975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Framework Nanosheet Electrocatalysts for Efficient H
    Wei X; Wang S; Hua Z; Chen L; Shi J
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25422-25428. PubMed ID: 29987922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafine NiFe clusters anchored on N-doped carbon as bifunctional electrocatalysts for efficient water and urea oxidation.
    Zhang J; Xing F; Zhang H; Huang Y
    Dalton Trans; 2020 Oct; 49(40):13962-13969. PubMed ID: 32794531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting.
    Kang Q; Li M; Shi J; Lu Q; Gao F
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19447-19456. PubMed ID: 32242652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic Cu-Co-Se Nanotube Arrays Assembled on 3D Framework: an Efficient Bifunctional Electrocatalyst for Overall Water Splitting.
    Ma Z; Gu X; Liu G; Zhao Q; Li J; Wang X
    ChemSusChem; 2021 Nov; 14(22):5065-5074. PubMed ID: 34546664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting.
    Xin Y; Kan X; Gan LY; Zhang Z
    ACS Nano; 2017 Oct; 11(10):10303-10312. PubMed ID: 28898052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting.
    Wei B; Xu G; Hei J; Zhang L; Huang T; Wang Q
    J Colloid Interface Sci; 2021 Nov; 602():619-626. PubMed ID: 34147752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-saving H
    Liu B; Wang G; Feng X; Dai L; Wen Z; Ci S
    Nanoscale; 2022 Sep; 14(35):12841-12848. PubMed ID: 36039893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.
    Liu M; Li J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2158-65. PubMed ID: 26711014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FeCoP
    Wang YN; Yang ZJ; Yang DH; Zhao L; Shi XR; Yang G; Han BH
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8832-8843. PubMed ID: 33587587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-Saving Electrolytic Hydrogen Generation: Ni
    Tang C; Zhang R; Lu W; Wang Z; Liu D; Hao S; Du G; Asiri AM; Sun X
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):842-846. PubMed ID: 27976509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOF-Derived Formation of Ni
    Liang X; Zheng B; Chen L; Zhang J; Zhuang Z; Chen B
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23222-23229. PubMed ID: 28613810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterostructure of Semiconductors on Self-Supported Cuprous Phosphide Nanowires for Enhanced Overall Water Splitting.
    Xu X; He Y; Huang W; Cao A; Kang L; Liu J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17520-17530. PubMed ID: 35394747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni
    Li K; Xie B; Feng D; Tong Y
    ChemSusChem; 2022 Nov; 15(21):e202201656. PubMed ID: 36110055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.