These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34585583)

  • 41. Ultrasmall Mode Volumes in Plasmonic Cavities of Nanoparticle-On-Mirror Structures.
    Huang S; Ming T; Lin Y; Ling X; Ruan Q; Palacios T; Wang J; Dresselhaus M; Kong J
    Small; 2016 Oct; 12(37):5190-5199. PubMed ID: 27515573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes.
    Sato Y; Terauchi M
    Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of electric/magnetic local interaction between Si photonic-crystal nanocavities and Au meta-atoms.
    Yi Y; Asano T; Tanaka Y; Song BS; Noda S
    Opt Lett; 2014 Oct; 39(19):5701-4. PubMed ID: 25360963
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons.
    Mohammadi Z; Van Vlack CP; Hughes S; Bornemann J; Gordon R
    Opt Express; 2012 Jul; 20(14):15024-34. PubMed ID: 22772198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the size dependence on the optical modes of anatase nanoplatelets using STEM-EELS.
    Liberti E; Menzel R; Shaffer MS; McComb DW
    Nanoscale; 2016 May; 8(18):9727-35. PubMed ID: 27113455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron energy-loss spectroscopy of surface plasmon activity in wrinkled gold structures.
    Mousavi M SS; Bicket IC; Bellido EP; Soleymani L; Botton GA
    J Chem Phys; 2020 Dec; 153(22):224703. PubMed ID: 33317278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanorattles with tailored electric field enhancement.
    Schnepf MJ; Mayer M; Kuttner C; Tebbe M; Wolf D; Dulle M; Altantzis T; Formanek P; Förster S; Bals S; König TAF; Fery A
    Nanoscale; 2017 Jul; 9(27):9376-9385. PubMed ID: 28656183
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?
    Mirsaleh-Kohan N; Iberi V; Simmons PD; Bigelow NW; Vaschillo A; Rowland MM; Best MD; Pennycook SJ; Masiello DJ; Guiton BS; Camden JP
    J Phys Chem Lett; 2012 Aug; 3(16):2303-9. PubMed ID: 26295787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-demand transfer of trapped photons on a chip.
    Konoike R; Nakagawa H; Nakadai M; Asano T; Tanaka Y; Noda S
    Sci Adv; 2016 May; 2(5):e1501690. PubMed ID: 27386530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron Energy Loss Spectroscopy Investigation into Symmetry in Gold Trimer and Tetramer Plasmonic Nanoparticle Structures.
    Barrow SJ; Collins SM; Rossouw D; Funston AM; Botton GA; Midgley PA; Mulvaney P
    ACS Nano; 2016 Sep; 10(9):8552-63. PubMed ID: 27482623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmonic nanocavity for obtaining bound state in the continuum in silicon waveguides.
    Qi Z; Hu G; Liu B; Li Y; Deng C; Zheng P; Wang F; Zhao L; Cui Y
    Opt Express; 2021 Mar; 29(6):9312-9323. PubMed ID: 33820362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light Guidance Aided by the Toroidal Dipole and the Magnetic Quadrupole in Silicon Slotted-Disk Chains.
    Díaz-Escobar E; Barreda ÁI; Mercadé L; Griol A; Pitanti A; Martínez A
    ACS Photonics; 2023 Mar; 10(3):707-714. PubMed ID: 36942156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Near-field transmission matrix microscopy for mapping high-order eigenmodes of subwavelength nanostructures.
    Seo E; Jin YH; Choi W; Jo Y; Lee S; Song KD; Ahn J; Park QH; Kim MK; Choi W
    Nat Commun; 2020 May; 11(1):2575. PubMed ID: 32444615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 1.2-µm-band ultrahigh-Q photonic crystal nanocavities and their potential for Raman silicon lasers.
    Okada H; Fujimoto M; Tanaka N; Saito Y; Asano T; Noda S; Takahashi Y
    Opt Express; 2021 Jul; 29(15):24396-24410. PubMed ID: 34614686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Full Three-Dimensonal Reconstruction of the Dyadic Green Tensor from Electron Energy Loss Spectroscopy of Plasmonic Nanoparticles.
    Hörl A; Trügler A; Hohenester U
    ACS Photonics; 2015 Oct; 2(10):1429-1435. PubMed ID: 26523284
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pulse capture without carrier absorption in dynamic Q photonic crystal nanocavities.
    Upham J; Inoue H; Tanaka Y; Stumpf W; Kojima K; Asano T; Noda S
    Opt Express; 2014 Jun; 22(13):15459-66. PubMed ID: 24977805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove.
    Yan J; Ma C; Liu P; Wang C; Yang G
    Light Sci Appl; 2017 Jan; 6(1):e16197. PubMed ID: 30167196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiband Hot Photoluminescence from Nanocavity-Embedded Silicon Nanowire Arrays with Tunable Wavelength.
    Mu Z; Yu H; Zhang M; Wu A; Qi G; Chu PK; An Z; Di Z; Wang X
    Nano Lett; 2017 Mar; 17(3):1552-1558. PubMed ID: 28135102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of multi-shell nanoparticles.
    Nakahigashi N; Sato Y; Terauchi M; Uehara M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i18. PubMed ID: 25359810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.