These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34585927)

  • 1. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.
    Zaverkin V; Holzmüller D; Steinwart I; Kästner J
    J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks.
    Schwalbe-Koda D; Tan AR; Gómez-Bombarelli R
    Nat Commun; 2021 Aug; 12(1):5104. PubMed ID: 34429418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
    Jose KV; Artrith N; Behler J
    J Chem Phys; 2012 May; 136(19):194111. PubMed ID: 22612084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and Accurate Artificial Neural Network Potential Model for MAPbI
    Chen HA; Pao CW
    ACS Omega; 2019 Jun; 4(6):10950-10959. PubMed ID: 31460193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physically informed artificial neural networks for atomistic modeling of materials.
    Pun GPP; Batra R; Ramprasad R; Mishin Y
    Nat Commun; 2019 May; 10(1):2339. PubMed ID: 31138813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments.
    Zaverkin V; Netz J; Zills F; Köhn A; Kästner J
    J Chem Theory Comput; 2022 Jan; 18(1):1-12. PubMed ID: 34882425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane.
    Abedi M; Behler J; Goldsmith CF
    J Chem Theory Comput; 2023 Nov; 19(21):7825-7832. PubMed ID: 37902963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials.
    Chen BWJ; Zhang X; Zhang J
    Chem Sci; 2023 Aug; 14(31):8338-8354. PubMed ID: 37564405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective: Machine learning potentials for atomistic simulations.
    Behler J
    J Chem Phys; 2016 Nov; 145(17):170901. PubMed ID: 27825224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence.
    Zubatiuk T; Isayev O
    Acc Chem Res; 2021 Apr; 54(7):1575-1585. PubMed ID: 33715355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.