BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34585988)

  • 1.
    Turra GL; Liedgens L; Sommer F; Schneider L; Zimmer D; Vilurbina Perez J; Koncarevic S; Schroda M; Mühlhaus T; Deponte M
    Microbiol Spectr; 2021 Oct; 9(2):e0080921. PubMed ID: 34585988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast.
    Specht S; Liedgens L; Duarte M; Stiegler A; Wirth U; Eberhardt M; Tomás A; Hell K; Deponte M
    Redox Biol; 2018 May; 15():363-374. PubMed ID: 29310075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent molecular evolution of the mitochondrial sulfhydryl:cytochrome C oxidoreductase Erv in opisthokonts and parasitic protists.
    Eckers E; Petrungaro C; Gross D; Riemer J; Hell K; Deponte M
    J Biol Chem; 2013 Jan; 288(4):2676-88. PubMed ID: 23233680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria.
    Terziyska N; Grumbt B; Kozany C; Hell K
    J Biol Chem; 2009 Jan; 284(3):1353-63. PubMed ID: 19011240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria.
    Lionaki E; Aivaliotis M; Pozidis C; Tokatlidis K
    Antioxid Redox Signal; 2010 Nov; 13(9):1327-39. PubMed ID: 20367271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.
    Mordas A; Tokatlidis K
    Acc Chem Res; 2015 Aug; 48(8):2191-9. PubMed ID: 26214018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mia40 Protein Serves as an Electron Sink in the Mia40-Erv1 Import Pathway.
    Neal SE; Dabir DV; Tienson HL; Horn DM; Glaeser K; Ogozalek Loo RR; Barrientos A; Koehler CM
    J Biol Chem; 2015 Aug; 290(34):20804-20814. PubMed ID: 26085103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.
    Ang SK; Zhang M; Lodi T; Lu H
    Biochem J; 2014 Jun; 460(2):199-210. PubMed ID: 24625320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenesis of yeast Mia40 - uncoupling folding from import and atypical recognition features.
    Chatzi A; Sideris DP; Katrakili N; Pozidis C; Tokatlidis K
    FEBS J; 2013 Oct; 280(20):4960-9. PubMed ID: 23937629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of twin Cys-Xaa9-Cys motif cysteines in mitochondrial import of the cytochrome C oxidase biogenesis factor Cmc1.
    Bourens M; Dabir DV; Tienson HL; Sorokina I; Koehler CM; Barrientos A
    J Biol Chem; 2012 Sep; 287(37):31258-69. PubMed ID: 22767599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria.
    Tang X; Ang SK; Ceh-Pavia E; Heyes DJ; Lu H
    FEBS J; 2020 Mar; 287(6):1220-1231. PubMed ID: 31569302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo.
    Erdogan AJ; Ali M; Habich M; Salscheider SL; Schu L; Petrungaro C; Thomas LW; Ashcroft M; Leichert LI; Roma LP; Riemer J
    Redox Biol; 2018 Jul; 17():200-206. PubMed ID: 29704824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System.
    Ozer HK; Dlouhy AC; Thornton JD; Hu J; Liu Y; Barycki JJ; Balk J; Outten CE
    J Biol Chem; 2015 Nov; 290(46):27829-40. PubMed ID: 26396185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c.
    Allen S; Balabanidou V; Sideris DP; Lisowsky T; Tokatlidis K
    J Mol Biol; 2005 Nov; 353(5):937-44. PubMed ID: 16185707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria.
    Ceh-Pavia E; Tang X; Liu Y; Heyes DJ; Zhao B; Xiao P; Lu H
    FEBS J; 2020 Jun; 287(11):2281-2291. PubMed ID: 31713999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40.
    Sztolsztener ME; Brewinska A; Guiard B; Chacinska A
    Traffic; 2013 Mar; 14(3):309-20. PubMed ID: 23186364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system.
    Gross DP; Burgard CA; Reddehase S; Leitch JM; Culotta VC; Hell K
    Mol Biol Cell; 2011 Oct; 22(20):3758-67. PubMed ID: 21865601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A disulfide relay system in mitochondria.
    Tokatlidis K
    Cell; 2005 Jul; 121(7):965-7. PubMed ID: 15989945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sulfhydryl oxidase Erv1 is a substrate of the Mia40-dependent protein translocation pathway.
    Terziyska N; Grumbt B; Bien M; Neupert W; Herrmann JM; Hell K
    FEBS Lett; 2007 Mar; 581(6):1098-102. PubMed ID: 17336303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting and maturation of Erv1/ALR in the mitochondrial intermembrane space.
    Kallergi E; Andreadaki M; Kritsiligkou P; Katrakili N; Pozidis C; Tokatlidis K; Banci L; Bertini I; Cefaro C; Ciofi-Baffoni S; Gajda K; Peruzzini R
    ACS Chem Biol; 2012 Apr; 7(4):707-14. PubMed ID: 22296668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.