These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34586139)

  • 21. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application.
    Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z
    J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.
    Wang S; Guan S; Xu J; Li W; Ge D; Sun C; Liu T; Ma X
    Biomater Sci; 2017 Sep; 5(10):2024-2034. PubMed ID: 28894864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.
    Björninen M; Gilmore K; Pelto J; Seppänen-Kaijansinkko R; Kellomäki M; Miettinen S; Wallace G; Grijpma D; Haimi S
    Ann Biomed Eng; 2017 Apr; 45(4):1015-1026. PubMed ID: 27844175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural crystallisation of crosslinked 3D PEDOT:PSS anisotropic porous biomaterials to generate highly conductive platforms for tissue engineering applications.
    Solazzo M; Monaghan MG
    Biomater Sci; 2021 Jun; 9(12):4317-4328. PubMed ID: 33683230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.
    Haslauer CM; Avery MR; Pourdeyhimi B; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):1050-8. PubMed ID: 25229198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation.
    Tomaskovic-Crook E; Zhang P; Ahtiainen A; Kaisvuo H; Lee CY; Beirne S; Aqrawe Z; Svirskis D; Hyttinen J; Wallace GG; Travas-Sejdic J; Crook JM
    Adv Healthc Mater; 2019 Aug; 8(15):e1900425. PubMed ID: 31168967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D organic bioelectronics for electrical monitoring of human adult stem cells.
    Savva A; Saez J; Withers A; Barberio C; Stoeger V; Elias-Kirma S; Lu Z; Moysidou CM; Kallitsis K; Pitsalidis C; Owens RM
    Mater Horiz; 2023 Aug; 10(9):3589-3600. PubMed ID: 37318042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical field stimulated modulation of cell fate of pre-osteoblasts on PVDF/BT/MWCNT based electroactive biomaterials.
    Bhaskar N; Kachappilly MC; Bhushan V; Pandya HJ; Basu B
    J Biomed Mater Res A; 2023 Mar; 111(3):340-353. PubMed ID: 36403282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D conductive nanocomposite scaffold for bone tissue engineering.
    Shahini A; Yazdimamaghani M; Walker KJ; Eastman MA; Hatami-Marbini H; Smith BJ; Ricci JL; Madihally SV; Vashaee D; Tayebi L
    Int J Nanomedicine; 2014; 9():167-81. PubMed ID: 24399874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds.
    Dominguez-Alfaro A; Alegret N; Arnaiz B; Salsamendi M; Mecerreyes D; Prato M
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57330-57342. PubMed ID: 33306363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PEDOT:PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility.
    Solazzo M; Krukiewicz K; Zhussupbekova A; Fleischer K; Biggs MJ; Monaghan MG
    J Mater Chem B; 2019 Aug; 7(31):4811-4820. PubMed ID: 31389966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conductive nanostructured Si biomaterials enhance osteogeneration through electrical stimulation.
    Huang Y; Deng H; Fan Y; Zheng L; Che J; Li X; Aifantis KE
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109748. PubMed ID: 31349398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Self-Powered Electrical Stimulation.
    Sun Y; Quan Q; Meng H; Zheng Y; Peng J; Hu Y; Feng Z; Sang X; Qiao K; He W; Chi X; Zhao L
    Adv Healthc Mater; 2019 May; 8(10):e1900127. PubMed ID: 30941919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of Multiwall Carbon Nanotubes Embedded Electroconductive Multi-Microchannel Scaffolds for Neuron Growth under Electrical Stimulation.
    Liu Z; Yushan M; Alike Y; Liu Y; Wu S; Ma C; Yusufu A
    Biomed Res Int; 2020; 2020():4794982. PubMed ID: 32337253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers.
    Agarwal M; Xing Q; Shim BS; Kotov N; Varahramyan K; Lvov Y
    Nanotechnology; 2009 May; 20(21):215602. PubMed ID: 19423933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration.
    Wang S; Guan S; Zhu Z; Li W; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():308-316. PubMed ID: 27987712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes.
    Zhao P; Zhang R; Tong Y; Zhao X; Zhang T; Tang Q; Liu Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55083-55093. PubMed ID: 33232130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Substrates Promotes Neural Priming.
    Eftekhari BS; Song D; Janmey PA
    Macromol Biosci; 2023 Dec; 23(12):e2300149. PubMed ID: 37571815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.
    Tian L; Prabhakaran MP; Hu J; Chen M; Besenbacher F; Ramakrishna S
    Colloids Surf B Biointerfaces; 2016 Sep; 145():420-429. PubMed ID: 27232305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of high conductive and piezoelectric poly (3,4-ethylenedioxythiophene)/chitosan nanofibers for enhancing cellular electrical stimulation.
    Du L; Li T; Jin F; Wang Y; Li R; Zheng J; Wang T; Feng ZQ
    J Colloid Interface Sci; 2020 Feb; 559():65-75. PubMed ID: 31610306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.