BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34586507)

  • 1. Computational investigation of sensing properties of Ca-doped zinc oxide nanotube toward formaldehyde.
    Zhou J; Zou L; Zhang X; Ji L; Nezhad PDK
    J Mol Model; 2021 Sep; 27(10):303. PubMed ID: 34586507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A density functional study on the formaldehyde recognition by Al-doped ZnO nanosheet.
    Fang Y; Yang DD; Xiang CY; Shi M; Zhao H; Asadi H
    J Mol Graph Model; 2020 Sep; 99():107630. PubMed ID: 32408250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of zinc oxide nano-tube as drug-delivery vehicles of anticancer drug.
    Kadhim MM; Taban TZ; Abdullaha SA; Alnasoud N; Hachim SK; Alomar S
    J Mol Model; 2023 Jan; 29(2):47. PubMed ID: 36656400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different metal-decorated aluminum phosphide nanotubes as hydrazine sensors for biomedical applications.
    Askary AE; Elesawy BH; Awwad NS; Ibrahium HA; Shkir M
    J Mol Model; 2022 Apr; 28(5):112. PubMed ID: 35378623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe-Doped ZnO/Reduced Graphene Oxide Nanocomposite with Synergic Enhanced Gas Sensing Performance for the Effective Detection of Formaldehyde.
    Guo W; Zhao B; Zhou Q; He Y; Wang Z; Radacsi N
    ACS Omega; 2019 Jun; 4(6):10252-10262. PubMed ID: 31460117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Conductometric Sensor Based on Al,Ca-Doped ZnO for the Detection of Formaldehyde.
    Crispi S; Neri G
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DFT study on the sensing behavior of a BC2N nanotube toward formaldehyde.
    Noei M; Peyghan AA
    J Mol Model; 2013 Sep; 19(9):3843-50. PubMed ID: 23801255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CuO-decorated ZnO nanotube-based sensor for detecting CO gas: a first-principles study.
    Tohidi S; Tohidi T; Mohammadabad PH
    J Mol Model; 2021 Sep; 27(10):279. PubMed ID: 34491435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CdO-ZnO nanorices for enhanced and selective formaldehyde gas sensing applications.
    Umar A; Ibrahim AA; Kumar R; Algadi H; Albargi H; Alsairi MA; Alhmami MAM; Zeng W; Ahmed F; Akbar S
    Environ Res; 2021 Sep; 200():111377. PubMed ID: 34058181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigation of the carbonyl-ene reaction between encapsulated formaldehyde and propylene over M-Cu-BTC paddlewheels (M= Be, Mg, and Ca): A DFT study.
    Sangthong W; Sirijaraensre J
    J Mol Graph Model; 2024 Jun; 129():108756. PubMed ID: 38479236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gamma-butyrolactone drug detection by Al-doped BC
    Ling-Yan W; Ai-Min L; Hamreh S
    J Mol Graph Model; 2020 Sep; 99():107632. PubMed ID: 32417724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Nanoheterostructure of Tungsten Disulfide Nanoflowers Doped with Zinc Oxide Hollow Spheres: Benzene Gas Sensing Properties and First-Principles Study.
    Zhang D; Wu J; Li P; Cao Y; Yang Z
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31245-31256. PubMed ID: 31365825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the Relationship between Energy Level and Gas Sensing Performance in Heteroatom-Doped Semiconducting Nanostructures.
    Chen H; Zhao Y; Shi L; Li GD; Sun L; Zou X
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29795-29804. PubMed ID: 30095885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability.
    Tai H; Li X; Jiang Y; Xie G; Du X
    Sensors (Basel); 2015 Jan; 15(1):2086-103. PubMed ID: 25608214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoheterostructure Construction and DFT Study of Ni-Doped In
    Zhang D; Cao Y; Yang Z; Wu J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11979-11989. PubMed ID: 32091868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and facile detection of formaldehyde through transition metals doped olympicene sensors: a step forward DFT investigation.
    Aetizaz M; Ullah F; Sarfaraz S; Mahmood T; Ayub K
    RSC Adv; 2023 Oct; 13(42):29231-29241. PubMed ID: 37809028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles study of pristine and Li-doped borophene as a candidate to detect and scavenge SO
    Tu X; Xu H; Wang X; Li C; Fan G; Chu X
    Nanotechnology; 2021 May; 32(32):. PubMed ID: 33887713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.
    Jeon YS; Seo HW; Kim SH; Kim YK
    J Nanosci Nanotechnol; 2016 May; 16(5):4814-9. PubMed ID: 27483827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridization of Zinc Oxide Tetrapods for Selective Gas Sensing Applications.
    Lupan O; Postica V; Gröttrup J; Mishra AK; de Leeuw NH; Carreira JF; Rodrigues J; Ben Sedrine N; Correia MR; Monteiro T; Cretu V; Tiginyanu I; Smazna D; Mishra YK; Adelung R
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):4084-4099. PubMed ID: 28111948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-Temperature Benzene Sensing with Au-Doped ZnO Nanorods/Exfoliated WSe
    Zhang D; Pan W; Zhou L; Yu S
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33392-33403. PubMed ID: 34228931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.