BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34586534)

  • 1. The interaction of folate-modified Bletilla striata polysaccharide-based micelle with bovine serum albumin.
    Wang X; Zhang G; Yu D; Wang N; Guan Q
    Glycoconj J; 2021 Oct; 38(5):585-597. PubMed ID: 34586534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doxorubicin-loaded folate-mediated pH-responsive micelle based on Bletilla striata polysaccharide: Release mechanism, cellular uptake mechanism, distribution, pharmacokinetics, and antitumor effects.
    Zhang G; Huang L; Wu J; Liu Y; Zhang Z; Guan Q
    Int J Biol Macromol; 2020 Dec; 164():566-577. PubMed ID: 32693124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of antitumor efficacy via mixed nano-size micelles of multifunctional Bletilla striata polysaccharide-based copolymer and D-α-tocopheryl polyethylene glycol succinate.
    Liu Y; Wu J; Huang L; Qiao J; Wang N; Yu D; Zhang G; Yu S; Guan Q
    Int J Biol Macromol; 2020 Jul; 154():499-510. PubMed ID: 32194114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-responsive Bletilla striata polysaccharide-based micelles for enhancing intracellular docetaxel delivery.
    Liu Y; Sun C; Zhang G; Wu J; Huang L; Qiao J; Guan Q
    Int J Biol Macromol; 2020 Jan; 142():277-287. PubMed ID: 31593738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro characterization of pH-sensitive Bletilla Striata polysaccharide copolymer micelles and enhanced tumour suppression in vivo.
    Zhao L; Sun D; Lu H; Han B; Zhang G; Guan Q
    J Pharm Pharmacol; 2018 Jun; 70(6):797-807. PubMed ID: 29485227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: In vitro and in vivo evaluation.
    Wang C; Zhu J; Ma J; Yang Y; Cui X
    Int J Pharm; 2019 Aug; 567():118436. PubMed ID: 31220566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the interaction of graphene oxide‑silver nanocomposites with bovine serum albumin and the formation of nanoparticle-protein corona.
    Xu X; Mao X; Wang Y; Li D; Du Z; Wu W; Jiang L; Yang J; Li J
    Int J Biol Macromol; 2018 Sep; 116():492-501. PubMed ID: 29753014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Binding interaction of harpagoside and bovine serum albumin: spectroscopic methodologies and molecular docking].
    Cao TW; Huang WB; Shi JW; He W
    Zhongguo Zhong Yao Za Zhi; 2018 Mar; 43(5):993-1000. PubMed ID: 29676099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of tebuconazole with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods.
    Bai J; Sun X; Ma X
    J Environ Sci Health B; 2020; 55(6):509-516. PubMed ID: 32037956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy.
    Ma N; Liu J; He W; Li Z; Luan Y; Song Y; Garg S
    J Colloid Interface Sci; 2017 Mar; 490():598-607. PubMed ID: 27923144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the interaction between mercury (II) and bovine serum albumin by spectroscopic methods.
    Chunmei D; Cunwei J; Huixiang L; Yuze S; Wei Y; Dan Z
    Environ Toxicol Pharmacol; 2014 Mar; 37(2):870-7. PubMed ID: 24657888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo.
    Yang R; An Y; Miao F; Li M; Liu P; Tang Q
    Int J Nanomedicine; 2014; 9():4231-43. PubMed ID: 25228802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.
    Bardajee GR; Hooshyar Z
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of Fatty Acid Amide Amphiphiles to Bovine Serum Albumin: Role of Amide Hydrogen Bonding.
    Ghosh S; Dey J
    J Phys Chem B; 2015 Jun; 119(25):7804-15. PubMed ID: 26023820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folate-conjugated beta-cyclodextrin-based polymeric micelles with enhanced doxorubicin antitumor efficacy.
    Zhang L; Lu J; Jin Y; Qiu L
    Colloids Surf B Biointerfaces; 2014 Oct; 122():260-269. PubMed ID: 25058857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the interaction between benzophenone and bovine serum albumin by spectroscopic methods.
    Zhang YZ; Zhang J; Li FF; Xiang X; Ren AQ; Liu Y
    Mol Biol Rep; 2011 Apr; 38(4):2445-53. PubMed ID: 21088910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.
    Bolattin MB; Nandibewoor ST; Chimatadar SA
    J Mol Recognit; 2016 Jul; 29(7):308-17. PubMed ID: 26785703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on the interaction of Congo Red with bovine serum albumin.
    Zhang YZ; Xiang X; Mei P; Dai J; Zhang LL; Liu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):907-14. PubMed ID: 19155189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the interaction of chromate with bovine serum albumin by spectroscopic method.
    Cao H; Yi Y
    Biometals; 2017 Aug; 30(4):529-539. PubMed ID: 28523598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of graphene oxide with bovine serum albumin: A fluorescence quenching study.
    Nan Z; Hao C; Ye X; Feng Y; Sun R
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():348-354. PubMed ID: 30476875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.