These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34586700)

  • 21. The structure of glycerol trinitrate reductase NerA from Agrobacterium radiobacter reveals the molecular reason for nitro- and ene-reductase activity in OYE homologues.
    Oberdorfer G; Binter A; Wallner S; Durchschein K; Hall M; Faber K; Macheroux P; Gruber K
    Chembiochem; 2013 May; 14(7):836-45. PubMed ID: 23606302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioreduction of alpha-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial and Helional.
    Stueckler C; Mueller NJ; Winkler CK; Glueck SM; Gruber K; Steinkellner G; Faber K
    Dalton Trans; 2010 Sep; 39(36):8472-6. PubMed ID: 20461254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques.
    Rowbotham JS; Ramirez MA; Lenz O; Reeve HA; Vincent KA
    Nat Commun; 2020 Mar; 11(1):1454. PubMed ID: 32193396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Revealing Additional Stereocomplementary Pairs of Old Yellow Enzymes by Rational Transfer of Engineered Residues.
    Nett N; Duewel S; Richter AA; Hoebenreich S
    Chembiochem; 2017 Apr; 18(7):685-691. PubMed ID: 28107586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of biocatalytic CC bond reductions in the synthesis of flavours and fragrances.
    Cancellieri MC; Nobbio C; Gatti FG; Brenna E; Parmeggiani F
    J Biotechnol; 2024 Jul; 390():13-27. PubMed ID: 38761886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from
    Mansell DJ; Toogood HS; Waller J; Hughes JM; Levy CW; Gardiner JM; Scrutton NS
    ACS Catal; 2013 Mar; 3(3):370-379. PubMed ID: 27547488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications.
    Yuan B; Yang D; Qu G; Turner NJ; Sun Z
    Chem Soc Rev; 2024 Jan; 53(1):227-262. PubMed ID: 38059509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases.
    Gao X; Turek-Herman JR; Choi YJ; Cohen RD; Hyster TK
    J Am Chem Soc; 2021 Dec; 143(47):19643-19647. PubMed ID: 34784482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic Asymmetric Reduction of Unfunctionalized C=C Bonds with Archaeal Geranylgeranyl Reductases.
    Cervinka R; Becker D; Lüdeke S; Albers SV; Netscher T; Müller M
    Chembiochem; 2021 Sep; 22(17):2693-2696. PubMed ID: 34296507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flavoenzymes for biocatalysis.
    Hall M
    Enzymes; 2020; 47():37-62. PubMed ID: 32951829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination.
    Marshall JR; Yao P; Montgomery SL; Finnigan JD; Thorpe TW; Palmer RB; Mangas-Sanchez J; Duncan RAM; Heath RS; Graham KM; Cook DJ; Charnock SJ; Turner NJ
    Nat Chem; 2021 Feb; 13(2):140-148. PubMed ID: 33380742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions.
    Chadha A; Venkataraman S; Preetha R; Padhi SK
    Bioorg Chem; 2016 Oct; 68():187-213. PubMed ID: 27544073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodococcus strains as source for ene-reductase activity.
    Chen BS; Médici R; van der Helm MP; van Zwet Y; Gjonaj L; van der Geest R; Otten LG; Hanefeld U
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5545-5556. PubMed ID: 29705954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric bioreduction of alkenes using ene-reductases YersER and KYE1 and effects of organic solvents.
    Yanto Y; Winkler CK; Lohr S; Hall M; Faber K; Bommarius AS
    Org Lett; 2011 May; 13(10):2540-3. PubMed ID: 21510626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dicarbonyl reduction by single enzyme for the preparation of chiral diols.
    Chen Y; Chen C; Wu X
    Chem Soc Rev; 2012 Mar; 41(5):1742-53. PubMed ID: 22222186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery, Characterisation, Engineering and Applications of Ene Reductases for Industrial Biocatalysis.
    Toogood HS; Scrutton NS
    ACS Catal; 2019 May; 8(4):3532-3549. PubMed ID: 31157123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New developments in 'ene'-reductase catalysed biological hydrogenations.
    Toogood HS; Scrutton NS
    Curr Opin Chem Biol; 2014 Apr; 19():107-15. PubMed ID: 24608082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE.
    Robescu MS; Niero M; Hall M; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2051-2066. PubMed ID: 31930452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme toolbox: novel enantiocomplementary imine reductases.
    Scheller PN; Fademrecht S; Hofelzer S; Pleiss J; Leipold F; Turner NJ; Nestl BM; Hauer B
    Chembiochem; 2014 Oct; 15(15):2201-4. PubMed ID: 25163890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ground-State Electron Transfer as an Initiation Mechanism for Biocatalytic C-C Bond Forming Reactions.
    Fu H; Lam H; Emmanuel MA; Kim JH; Sandoval BA; Hyster TK
    J Am Chem Soc; 2021 Jun; 143(25):9622-9629. PubMed ID: 34114803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.