These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34586709)
1. Transcription factors CncC and Maf connect the molecular network between pesticide resistance and resurgence of pest mites. Shen GM; Ou SY; Li CZ; Feng KY; Niu JZ; Adang MJ; He L Insect Sci; 2022 Jun; 29(3):801-816. PubMed ID: 34586709 [TBL] [Abstract][Full Text] [Related]
2. The expression of P450 genes mediating fenpropathrin resistance is regulated by CncC and Maf in Tetranychus cinnabarinus (Boisduval). Shi L; Wang M; Zhang Y; Shen G; Di H; Wang Y; He L Comp Biochem Physiol C Toxicol Pharmacol; 2017 Aug; 198():28-36. PubMed ID: 28502899 [TBL] [Abstract][Full Text] [Related]
3. The fenpropathrin resistant Tetranychus cinnabarinus showed increased fecundity with high content of vitellogenin and vitellogenin receptor. Liu X; Shen G; Xu H; He L Pestic Biochem Physiol; 2016 Nov; 134():31-38. PubMed ID: 27914537 [TBL] [Abstract][Full Text] [Related]
4. Sublethal and transgenerational effects of pyridaben exposure on the fitness and gene expression of Panonychus citri. Pan D; Xia M; Luo Q; Li C; Yuan G; Wang J; Dou W Pest Manag Sci; 2023 Sep; 79(9):3250-3261. PubMed ID: 37071486 [TBL] [Abstract][Full Text] [Related]
5. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Shi L; Xu Z; Shen G; Song C; Wang Y; Peng J; Zhang J; He L Pestic Biochem Physiol; 2015 Mar; 119():33-41. PubMed ID: 25868814 [TBL] [Abstract][Full Text] [Related]
6. Collaborative contribution of six cytochrome P450 monooxygenase genes to fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Shi L; Zhang J; Shen G; Xu Z; Xu Q; He L Insect Mol Biol; 2016 Oct; 25(5):653-65. PubMed ID: 27351452 [TBL] [Abstract][Full Text] [Related]
7. Maf regulates the overexpression of CYP307A1, which is involved in the fitness advantage of bistrifluron-resistant Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Gong C; Wang Y; Huang Q; Xu Z; Zhang Y; Hasnain A; Zhan X; He Y; Zhang T; Shen L; Pu J; Awais M; Wang X Ecotoxicol Environ Saf; 2022 Apr; 234():113425. PubMed ID: 35325711 [TBL] [Abstract][Full Text] [Related]
8. CYP4CL2 Confers Metabolic Resistance to Pyridaben in the Citrus Pest Mite Pan D; Xia M; Li C; Liu X; Archdeacon L; O'Reilly AO; Yuan G; Wang J; Dou W J Agric Food Chem; 2023 Dec; 71(49):19465-19474. PubMed ID: 38048568 [TBL] [Abstract][Full Text] [Related]
9. Activation of CncC pathway by ROS burst regulates ABC transporter responsible for beta-cypermethrin resistance in Dermanyssus gallinae (Acari:Dermanyssidae). Wang P; Li H; Meng J; Liu Q; Wang X; Wang B; Liu B; Wang C; Sun W; Pan B Vet Parasitol; 2024 Apr; 327():110121. PubMed ID: 38286058 [TBL] [Abstract][Full Text] [Related]
10. Sublethal and transgenerational effects of lufenuron on the biological traits of Panonychus citri (McGregor) (Acari: Tetranychidae). Xia MH; Pan D; Li CZ; Li YC; Dou W; Wang JJ Pestic Biochem Physiol; 2024 Jan; 198():105727. PubMed ID: 38225066 [TBL] [Abstract][Full Text] [Related]
11. Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). Liu B; Jiang G; Zhang Y; Li J; Li X; Yue J; Chen F; Liu H; Li H; Zhu S; Wang J; Ran C PLoS One; 2011; 6(12):e28516. PubMed ID: 22162774 [TBL] [Abstract][Full Text] [Related]
12. Genetic analysis and screening of detoxification-related genes in an amitraz-resistant strain of Yu SJ; Cong L; Liu HQ; Ran C Bull Entomol Res; 2020 Dec; 110(6):743-755. PubMed ID: 32419680 [TBL] [Abstract][Full Text] [Related]
13. Involvement of Three Esterase Genes from Panonychus citri (McGregor) in Fenpropathrin Resistance. Shen XM; Liao CY; Lu XP; Wang Z; Wang JJ; Dou W Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548163 [TBL] [Abstract][Full Text] [Related]
14. A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval). Wen X; Feng K; Qin J; Wei P; Cao P; Zhang Y; Yuchi Z; He L PLoS Genet; 2023 Sep; 19(9):e1010911. PubMed ID: 37708138 [TBL] [Abstract][Full Text] [Related]
15. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. Amezian D; Fricaux T; de Sousa G; Maiwald F; Huditz HI; Nauen R; Le Goff G Pestic Biochem Physiol; 2023 Sep; 195():105563. PubMed ID: 37666619 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant Role of Liao CY; Feng YC; Li G; Shen XM; Liu SH; Dou W; Wang JJ Front Physiol; 2018; 9():314. PubMed ID: 29651254 [TBL] [Abstract][Full Text] [Related]
17. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval). Shi L; Zhang J; Shen G; Xu Z; Wei P; Zhang Y; Xu Q; He L Sci Rep; 2015 Oct; 5():15581. PubMed ID: 26493678 [TBL] [Abstract][Full Text] [Related]
18. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. Yuan ML; Wei DD; Wang BJ; Dou W; Wang JJ BMC Genomics; 2010 Oct; 11():597. PubMed ID: 20969792 [TBL] [Abstract][Full Text] [Related]
19. P8 nuclear receptor responds to acaricides exposure and regulates transcription of P450 enzyme in the two-spotted spider mite, Tetranychus urticae. Jia H; Peiling L; Yuan H; Wencai L; Zhifeng X; Lin H Comp Biochem Physiol C Toxicol Pharmacol; 2019 Oct; 224():108561. PubMed ID: 31254664 [TBL] [Abstract][Full Text] [Related]
20. RNAi targeting ecdysone receptor blocks the larva to adult development of Tetranychus cinnabarinus. Shen GM; Chen W; Li CZ; Ou SY; He L Pestic Biochem Physiol; 2019 Sep; 159():85-90. PubMed ID: 31400788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]