These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34586800)

  • 1. Methacrylated Silk Fibroin Hydrogels: pH as a Tool to Control Functionality.
    Barroso IA; Man K; Villapun VM; Cox SC; Ghag AK
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4779-4791. PubMed ID: 34586800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation.
    Hasturk O; Jordan KE; Choi J; Kaplan DL
    Biomaterials; 2020 Feb; 232():119720. PubMed ID: 31896515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration.
    Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W
    Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin.
    Rajput M; Mondal P; Yadav P; Chatterjee K
    Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of silk fibroin/hyaluronic acid hydrogels with enhanced mechanical performance by a combination of physical and enzymatic crosslinking.
    Qu X; Yan L; Liu S; Tan Y; Xiao J; Cao Y; Chen K; Xiao W; Li B; Liao X
    J Biomater Sci Polym Ed; 2021 Aug; 32(12):1635-1653. PubMed ID: 34004124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.
    Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH
    Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocurable antimicrobial silk-based hydrogels for corneal repair.
    Barroso IA; Man K; Hall TJ; Robinson TE; Louth SET; Cox SC; Ghag AK
    J Biomed Mater Res A; 2022 Jul; 110(7):1401-1415. PubMed ID: 35257514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and cytocompatible cell-laden silk hydrogel formation
    Piluso S; Flores Gomez D; Dokter I; Moreira Texeira L; Li Y; Leijten J; van Weeren R; Vermonden T; Karperien M; Malda J
    J Mater Chem B; 2020 Oct; 8(41):9566-9575. PubMed ID: 33001117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity.
    Cui X; Soliman BG; Alcala-Orozco CR; Li J; Vis MAM; Santos M; Wise SG; Levato R; Malda J; Woodfield TBF; Rnjak-Kovacina J; Lim KS
    Adv Healthc Mater; 2020 Feb; 9(4):e1901667. PubMed ID: 31943911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Gelation Mechanisms and Cytocompatibility of Gold (III)-Mediated Regenerated and Thiolated Silk Fibroin Hydrogels.
    Laomeephol C; Ferreira H; Yodmuang S; Reis RL; Damrongsakkul S; Neves NM
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32197484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genipin-Cross-Linked Silk Fibroin/Alginate Dialdehyde Hydrogel with Tunable Gelation Kinetics, Degradability, and Mechanical Properties: A Potential Candidate for Tissue Regeneration.
    Vaziri AS; Vasheghani-Farahani E; Hosseinzadeh S; Bagheri F; Büchner M; Schubert DW; Boccaccini AR
    Biomacromolecules; 2024 Apr; 25(4):2323-2337. PubMed ID: 38437165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-crosslinked in-situ forming alginate/silk fibroin hydrogel with potential for bone tissue engineering.
    Ghorbani M; Vasheghani-Farahani E; Azarpira N; Hashemi-Najafabadi S; Ghasemi A
    Biomater Adv; 2023 Oct; 153():213565. PubMed ID: 37542914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs.
    Viola M; Ainsworth MJ; Mihajlovic M; Cedillo-Servin G; van Steenbergen MJ; van Rijen M; de Ruijter M; Castilho M; Malda J; Vermonden T
    Biomacromolecules; 2024 Mar; 25(3):1563-1577. PubMed ID: 38323427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs.
    Kundu J; Poole-Warren LA; Martens P; Kundu SC
    Acta Biomater; 2012 May; 8(5):1720-9. PubMed ID: 22285428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of pH and Glucose Responsive Silk Fibroin Hydrogels.
    Tao X; Jiang F; Cheng K; Qi Z; Yadavalli VK; Lu S
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatically crosslinked and mechanically tunable silk fibroin/pullulan hydrogels for mesenchymal stem cells delivery.
    Li T; Song X; Weng C; Wang X; Wu J; Sun L; Gong X; Zeng WN; Yang L; Chen C
    Int J Biol Macromol; 2018 Aug; 115():300-307. PubMed ID: 29665386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.
    Hong H; Seo YB; Kim DY; Lee JS; Lee YJ; Lee H; Ajiteru O; Sultan MT; Lee OJ; Kim SH; Park CH
    Biomaterials; 2020 Feb; 232():119679. PubMed ID: 31865191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable silk fibroin hydrogels.
    Oral CB; Yetiskin B; Okay O
    Int J Biol Macromol; 2020 Oct; 161():1371-1380. PubMed ID: 32791264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing.
    Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.