BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34586977)

  • 1. Preparation, stimuli-response performance of HPC-PMAA/PpIX nanogels and their application in photodynamic therapy.
    Zhao C; Song Q; Zhu L; Ma H
    J Biomater Sci Polym Ed; 2022 Feb; 33(3):313-328. PubMed ID: 34586977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties.
    An D; Zhao D; Li X; Lu X; Qiu G; Shea KJ
    Carbohydr Polym; 2015 Dec; 134():385-9. PubMed ID: 26428138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, Characterization of NR@SiO
    Wang Z; Song Q; Zhu L; Zhao C; Ma H
    J Fluoresc; 2022 Mar; 32(2):771-782. PubMed ID: 35091909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of protoporphyrin IX performance in aqueous solutions for photodynamic therapy.
    Homayoni H; Jiang K; Zou X; Hossu M; Rashidi LH; Chen W
    Photodiagnosis Photodyn Ther; 2015 Jun; 12(2):258-66. PubMed ID: 25636780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study.
    Basoglu H; Bilgin MD; Demir MM
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():81-90. PubMed ID: 26751701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and photodynamic efficacy of water-soluble protoporphyrin IX homologue with mPEG550.
    Basoglu H; Degirmencioglu I; Eyupoglu FC
    Photodiagnosis Photodyn Ther; 2021 Dec; 36():102615. PubMed ID: 34740838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Characterization of Temperature-Sensitive and Chemically Cross-Linked Poly( N-isopropylacrylamide)/Photosensitizer Hydrogels for Applications in Photodynamic Therapy.
    Belali S; Savoie H; O'Brien JM; Cafolla AA; O'Connell B; Karimi AR; Boyle RW; Senge MO
    Biomacromolecules; 2018 May; 19(5):1592-1601. PubMed ID: 29596749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a novel nanoparticle to use X-ray fluorescence of TiO
    Noghreiyan AV; Soleymanifard S; Sazgarnia A
    Photodiagnosis Photodyn Ther; 2024 Feb; 45():103890. PubMed ID: 37981223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous protoporphyrin IX-embedded cellulose diacetate electrospun microfibers in antimicrobial photodynamic inactivation.
    Wang T; Ke H; Chen S; Wang J; Yang W; Cao X; Liu J; Wei Q; Ghiladi RA; Wang Q
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111502. PubMed ID: 33255063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the emission spectra and cytotoxicity of TiO
    Vejdani Noghreiyan A; Sazegar MR; Mousavi Shaegh SA; Sazgarnia A
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101770. PubMed ID: 32311544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy.
    Sengar P; Juárez P; Verdugo-Meza A; Arellano DL; Jain A; Chauhan K; Hirata GA; Fournier PGJ
    J Nanobiotechnology; 2018 Feb; 16(1):19. PubMed ID: 29482561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cellular uptake of protoporphyrine IX/linolenic acid-conjugated spherical nanohybrids for photodynamic therapy.
    Lee HI; Kim YJ
    Colloids Surf B Biointerfaces; 2016 Jun; 142():182-191. PubMed ID: 26954084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodynamic application of protoporphyrin IX as a photosensitizer encapsulated by silica nanoparticles.
    Makhadmeh GN; Abdul Aziz A
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1043-S1046. PubMed ID: 30449196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulated release of photosensitizers from graft and diblock micelles for photodynamic therapy.
    Tsai HC; Tsai CH; Lin SY; Jhang CR; Chiang YS; Hsiue GH
    Biomaterials; 2012 Feb; 33(6):1827-37. PubMed ID: 22142770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy.
    Anayo L; Magnussen A; Perry A; Wood M; Curnow A
    Lasers Surg Med; 2018 Jul; 50(5):552-565. PubMed ID: 29603761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions.
    Blake E; Allen J; Curnow A
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):575-82. PubMed ID: 24284114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protoporphyrin IX (PpIX) loaded PLGA nanoparticles for topical Photodynamic Therapy of melanoma cells.
    da Silva DB; da Silva CL; Davanzo NN; da Silva Souza R; Correa RJ; Tedesco AC; Riemma Pierre MB
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102317. PubMed ID: 33940210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dot-protoporphyrin IX conjugates for improved drug delivery and bioimaging.
    Aguilar Cosme JR; Bryant HE; Claeyssens F
    PLoS One; 2019; 14(7):e0220210. PubMed ID: 31344086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells.
    Xia J; Zhang L; Qian M; Bao Y; Wang J; Li Y
    J Colloid Interface Sci; 2017 Jul; 498():170-181. PubMed ID: 28324723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving in vitro photodynamic therapy through the development of a novel iron chelating aminolaevulinic acid prodrug.
    Curnow A; Perry A; Wood M
    Photodiagnosis Photodyn Ther; 2019 Mar; 25():157-165. PubMed ID: 30553949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.