These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34587001)

  • 1. Effects of Anatomical Variations of the Stomach on Body-Surface Gastric Mapping Investigated Using a Large Population-Based Multiscale Simulation Approach.
    Ruenruaysab K; Calder S; Hayes T; Andrews C; OaGrady G; Gharibans A; Du P
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1369-1377. PubMed ID: 34587001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Anatomical Variations on Body Surface Gastric Mapping.
    Ruenruaysab K; Calder S; Hayes T; O'Grady G; Gharibans A; Du P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2388-2391. PubMed ID: 33018487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
    Calder S; Cheng LK; Andrews CN; Paskaranandavadivel N; Waite S; Alighaleh S; Erickson JC; Gharibans A; O'Grady G; Du P
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G295-G305. PubMed ID: 35916432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles and clinical methods of body surface gastric mapping: Technical review.
    O'Grady G; Varghese C; Schamberg G; Calder S; Du P; Xu W; Tack J; Daker C; Mousa H; Abell TL; Parkman HP; Ho V; Bradshaw LA; Hobson A; Andrews CN; Gharibans AA;
    Neurogastroenterol Motil; 2023 Oct; 35(10):e14556. PubMed ID: 36989183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications.
    Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G
    Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel scalable electrode array and system for non-invasively assessing gastric function using flexible electronics.
    Gharibans AA; Hayes TCL; Carson DA; Calder S; Varghese C; Du P; Yarmut Y; Waite S; Keane C; Woodhead JST; Andrews CN; O'Grady G
    Neurogastroenterol Motil; 2023 Feb; 35(2):e14418. PubMed ID: 35699340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array.
    Sukasem A; Calder S; Angeli-Gordon TR; Andrews CN; O'Grady G; Gharibans A; Du P
    Biomed Eng Online; 2022 Jun; 21(1):43. PubMed ID: 35761323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias.
    Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroanatomical mapping of the stomach with simultaneous biomagnetic measurements.
    Drake CE; Cheng LK; Muszynski ND; Somarajan S; Paskaranandavadivel N; Angeli-Gordon TR; Du P; Bradshaw LA; Avci R
    Comput Biol Med; 2023 Oct; 165():107384. PubMed ID: 37633085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles.
    Han H; Cheng LK; Paskaranandavadivel N
    Neurogastroenterol Motil; 2022 Dec; 34(12):e14422. PubMed ID: 35726361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normative Values for Body Surface Gastric Mapping Evaluations of Gastric Motility Using Gastric Alimetry: Spectral Analysis.
    Varghese C; Schamberg G; Calder S; Waite S; Carson D; Foong D; Wang WJ; Ho V; Woodhead J; Daker C; Xu W; Du P; Abell TL; Parkman HP; Tack J; Andrews CN; O'Grady G; Gharibans AA
    Am J Gastroenterol; 2023 Jun; 118(6):1047-1057. PubMed ID: 36534985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
    O'Grady G; Du P; Cheng LK; Egbuji JU; Lammers WJ; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Sep; 299(3):G585-92. PubMed ID: 20595620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal placement of impedance epigastrography electrodes.
    Kee WC; Kingma YJ; Mintchev MP; Bowes KL
    Ann Biomed Eng; 1996; 24(2):328-32. PubMed ID: 8678362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.