These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34587173)

  • 1. Emergency of Tsallis statistics in fractal networks.
    Deppman A; Andrade-Ii EO
    PLoS One; 2021; 16(9):e0257855. PubMed ID: 34587173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions.
    Liu JL; Yu ZG; Anh V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032814. PubMed ID: 24730906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic signature of fractal-like filament networks formed by orientational linear epitaxy.
    Hwang W; Eryilmaz E
    Phys Rev Lett; 2014 Jul; 113(2):025502. PubMed ID: 25062204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fractal brain: scale-invariance in structure and dynamics.
    Grosu GF; Hopp AV; Moca VV; Bârzan H; Ciuparu A; Ercsey-Ravasz M; Winkel M; Linde H; Mureșan RC
    Cereb Cortex; 2023 Apr; 33(8):4574-4605. PubMed ID: 36156074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the circadian system in fractal neurophysiological control.
    Pittman-Polletta BR; Scheer FA; Butler MP; Shea SA; Hu K
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):873-94. PubMed ID: 23573942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal connectivity of long-memory networks.
    Achard S; Bassett DS; Meyer-Lindenberg A; Bullmore E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036104. PubMed ID: 18517458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal Structure and Non-Extensive Statistics.
    Deppman A; Frederico T; Megías E; Menezes DP
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome.
    Rzhetsky A; Gomez SM
    Bioinformatics; 2001 Oct; 17(10):988-96. PubMed ID: 11673244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical distributions and self-organizing phenomena: what conclusions should be drawn?
    Guastello SJ
    Nonlinear Dynamics Psychol Life Sci; 2005 Oct; 9(4):463-78. PubMed ID: 16194302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Health, 'small-worlds', fractals and complex networks: an emerging field.
    Mutch WA; Lefevre GR
    Med Sci Monit; 2003 May; 9(5):MT19-23. PubMed ID: 12761464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.
    Bassett DS; Greenfield DL; Meyer-Lindenberg A; Weinberger DR; Moore SW; Bullmore ET
    PLoS Comput Biol; 2010 Apr; 6(4):e1000748. PubMed ID: 20421990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeleton and fractal scaling in complex networks.
    Goh KI; Salvi G; Kahng B; Kim D
    Phys Rev Lett; 2006 Jan; 96(1):018701. PubMed ID: 16486532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-free networks embedded in fractal space.
    Yakubo K; Korošak D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066111. PubMed ID: 21797445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal rules in brain networks: Signatures of self-organization.
    Singh SS; Haobijam D; Malik MZ; Ishrat R; Singh RKB
    J Theor Biol; 2018 Jan; 437():58-66. PubMed ID: 28935234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical description of the evolution of neural networks: learning rules and complexity.
    Holthausen K; Breidbach O
    Biol Cybern; 1999 Aug; 81(2):169-75. PubMed ID: 10481242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling of degree correlations and its influence on diffusion in scale-free networks.
    Gallos LK; Song C; Makse HA
    Phys Rev Lett; 2008 Jun; 100(24):248701. PubMed ID: 18643633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The statistical overlap theory of chromatography using power law (fractal) statistics.
    Schure MR; Davis JM
    J Chromatogr A; 2011 Dec; 1218(52):9297-306. PubMed ID: 22088670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renormalization group approach to power-law modeling of complex metabolic networks.
    Hernández-Bermejo B
    J Theor Biol; 2010 Aug; 265(3):422-32. PubMed ID: 20447410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.