BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 34587448)

  • 21. Nanoparticle-based 'turn-on' scattering and post-sample fluorescence for ultrasensitive detection of water pollution in wider window.
    Singh S; Halder A; Sinha O; Sarkar PK; Singh P; Banerjee A; Ahmed SA; Alharbi A; Obaid RJ; Ghosh SK; Mitra A; Pal SK
    PLoS One; 2020; 15(1):e0227584. PubMed ID: 31917807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering.
    Li ZY; Xia Y
    Nano Lett; 2010 Jan; 10(1):243-9. PubMed ID: 19958019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.
    Fu L; Lin CT; Karimi-Maleh H; Chen F; Zhao S
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-target molecule detection with nonbleaching multicolor optical immunolabels.
    Schultz S; Smith DR; Mock JJ; Schultz DA
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):996-1001. PubMed ID: 10655473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A single molecule immunoassay by localized surface plasmon resonance.
    Mayer KM; Hao F; Lee S; Nordlander P; Hafner JH
    Nanotechnology; 2010 Jun; 21(25):255503. PubMed ID: 20516579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploiting Surface-Plasmon-Enhanced Light Scattering for the Design of Ultrasensitive Biosensing Modality.
    Yang CT; Wu L; Liu X; Tran NT; Bai P; Liedberg B; Wang Y; Thierry B
    Anal Chem; 2016 Dec; 88(23):11924-11930. PubMed ID: 27934101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod.
    Zijlstra P; Paulo PM; Orrit M
    Nat Nanotechnol; 2012 Apr; 7(6):379-82. PubMed ID: 22504707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The gold-nanoparticle-based surface plasmon resonance light scattering and visual DNA aptasensor for lysozyme.
    Wang X; Xu Y; Chen Y; Li L; Liu F; Li N
    Anal Bioanal Chem; 2011 Jun; 400(7):2085-91. PubMed ID: 21461986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of plasmon energetics on light emission induced by scanning tunneling microscopy.
    Miwa K; Sakaue M; Gumhalter B; Kasai H
    J Phys Condens Matter; 2014 Jun; 26(22):222001. PubMed ID: 24810264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced surface plasmon microscopy based on multi-channel spatial light switching for label-free neuronal imaging.
    Son T; Lee C; Moon G; Lee D; Cheong E; Kim D
    Biosens Bioelectron; 2019 Dec; 146():111738. PubMed ID: 31600626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting the light-metal interaction for biomolecular sensing and imaging.
    Höppener C; Novotny L
    Q Rev Biophys; 2012 May; 45(2):209-55. PubMed ID: 22559015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced Darkfield microscopy.
    Badireddy AR; Wiesner MR; Liu J
    Environ Sci Technol; 2012 Sep; 46(18):10081-8. PubMed ID: 22906208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circularly symmetric light scattering from nanoplasmonic spirals.
    Trevino J; Cao H; Dal Negro L
    Nano Lett; 2011 May; 11(5):2008-16. PubMed ID: 21466155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral image contrast-based flow digital nanoplasmon-metry for ultrasensitive antibody detection.
    Wang SH; Kuo CW; Lo SC; Yeung WK; Chang TW; Wei PK
    J Nanobiotechnology; 2022 Jan; 20(1):6. PubMed ID: 34983543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical sensing and imaging with metallic nanorods.
    Murphy CJ; Gole AM; Hunyadi SE; Stone JW; Sisco PN; Alkilany A; Kinard BE; Hankins P
    Chem Commun (Camb); 2008 Feb; (5):544-57. PubMed ID: 18209787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localized surface plasmon resonance light-scattering sensor for mercury(II) ion with label-free gold nanoparticles.
    Xiong C; Ling L
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1406-10. PubMed ID: 23646648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-color dark-field (TCDF) microscopy for metal nanoparticle imaging inside cells.
    Rodríguez-Fajardo V; Sanz V; de Miguel I; Berthelot J; Aćimović SS; Porcar-Guezenec R; Quidant R
    Nanoscale; 2018 Feb; 10(8):4019-4027. PubMed ID: 29431802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique.
    Huang CZ; Liao QG; Gan LH; Guo FL; Li YF
    Anal Chim Acta; 2007 Dec; 604(2):165-9. PubMed ID: 17996538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.