These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 34587448)

  • 41. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular plasmonics: light meets molecules at the nanoscale.
    Csaki A; Schneider T; Wirth J; Jahr N; Steinbrück A; Stranik O; Garwe F; Müller R; Fritzsche W
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3483-96. PubMed ID: 21807723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells.
    Agnarsson B; Lundgren A; Gunnarsson A; Rabe M; Kunze A; Mapar M; Simonsson L; Bally M; Zhdanov VP; Höök F
    ACS Nano; 2015 Dec; 9(12):11849-62. PubMed ID: 26517791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy.
    Zhang X; Zheng Y; Liu X; Lu W; Dai J; Lei DY; MacFarlane DR
    Adv Mater; 2015 Feb; 27(6):1090-6. PubMed ID: 25534763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of DNA based on localized surface plasmon resonance light scattering using unmodified gold bipyramids.
    Qi H; Bi N; Chen Y; Zheng X; Zhang H; Wang X; Chen Y; Tian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):769-73. PubMed ID: 21784699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams.
    Bautista G; Huttunen MJ; Mäkitalo J; Kontio JM; Simonen J; Kauranen M
    Nano Lett; 2012 Jun; 12(6):3207-12. PubMed ID: 22587307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.
    Gary R; Carbone G; Petriashvili G; De Santo MP; Barberi R
    Sensors (Basel); 2016 Feb; 16(2):258. PubMed ID: 26907286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomedical applications of plasmon resonant metal nanoparticles.
    Liao H; Nehl CL; Hafner JH
    Nanomedicine (Lond); 2006 Aug; 1(2):201-8. PubMed ID: 17716109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visible Illumination Enhanced Nonenzymatic Glucose Photobiosensor Based on TiO2 Nanorods Decorated With Au Nanoparticles.
    Wang SH; Chang SJ; Hsu CL; Fang YJ
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2052-2057. PubMed ID: 29989940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites.
    Li Q; Wang Q; Yang X; Wang K; Zhang H; Nie W
    Talanta; 2017 Nov; 174():521-526. PubMed ID: 28738618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wavelet-based decomposition of high resolution surface plasmon microscopy V(Z) curves at visible and near infrared wavelengths.
    Boyer-Provera E; Rossi A; Oriol L; Dumontet C; Plesa A; Berguiga L; Elezgaray J; Arneodo A; Argoul F
    Opt Express; 2013 Mar; 21(6):7456-77. PubMed ID: 23546129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmonics meets super-resolution microscopy in biology.
    Wang M; Li M; Jiang S; Gao J; Xi P
    Micron; 2020 Oct; 137():102916. PubMed ID: 32688264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photonic resonator interferometric scattering microscopy.
    Li N; Canady TD; Huang Q; Wang X; Fried GA; Cunningham BT
    Nat Commun; 2021 Mar; 12(1):1744. PubMed ID: 33741998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of Scattering Nonlinearities from a Single Plasmonic Nanoparticle.
    Lee H; Li KY; Huang YT; Shen PT; Deka G; Oketani R; Yonemaru Y; Yamanaka M; Fujita K; Chu SW
    J Vis Exp; 2016 Jan; (107):. PubMed ID: 26780248
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system.
    Wang H; Chen D; Wei Y; Yu L; Zhang P; Zhao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):2012-6. PubMed ID: 21592852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition.
    Qi WJ; Wu D; Ling J; Huang CZ
    Chem Commun (Camb); 2010 Jul; 46(27):4893-5. PubMed ID: 20539899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae.
    Weinkauf H; Brehm-Stecher BF
    Biotechnol J; 2009 Jun; 4(6):871-9. PubMed ID: 19492326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmon resonant particles for biological detection.
    Schultz DA
    Curr Opin Biotechnol; 2003 Feb; 14(1):13-22. PubMed ID: 12565997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.