These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 345875)

  • 1. Mechanical inspiratory peak flow as a determinant of tidal volume during IMV and PEEP.
    Perel A; Pachys F; Olshwang D; Cotev S
    Anesthesiology; 1978 Apr; 48(4):290-2. PubMed ID: 345875
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation.
    Dreyfuss D; Saumon G
    Am Rev Respir Dis; 1993 Nov; 148(5):1194-203. PubMed ID: 8239153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial liquid ventilation versus conventional mechanical ventilation with high PEEP and moderate tidal volume in acute respiratory failure in piglets.
    Rödl S; Urlesberger B; Knez I; Dacar D; Zobel G
    Pediatr Res; 2002 Aug; 52(2):225-32. PubMed ID: 12149500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inspiratory capacity at inflation hold in ventilated newborns: a surrogate measure for static compliance of the respiratory system.
    Hentschel R; Semar N; Guttmann J
    Pediatr Crit Care Med; 2012 Sep; 13(5):560-7. PubMed ID: 22460774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decelerating inspiratory flow waveform improves lung mechanics and gas exchange in patients on intermittent positive-pressure ventilation.
    Al-Saady N; Bennett ED
    Intensive Care Med; 1985; 11(2):68-75. PubMed ID: 3886741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intermittent mandatory ventilation on respiratory drive and timing.
    Weiss JW; Rossing TH; Ingram RH
    Am Rev Respir Dis; 1983 Jun; 127(6):705-8. PubMed ID: 6407372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of respiratory inductive plethysmography in controlled ventilation: measurement of tidal volume and PEEP-induced changes of end-expiratory lung volume.
    Neumann P; Zinserling J; Haase C; Sydow M; Burchardi H
    Chest; 1998 Feb; 113(2):443-51. PubMed ID: 9498965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using conventional infant ventilators at unconventional rates.
    Boros SJ; Bing DR; Mammel MC; Hagen E; Gordon MJ
    Pediatrics; 1984 Oct; 74(4):487-92. PubMed ID: 6384912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced inspiratory effort during intermittent mandatory ventilation with PEEP.
    Brach BB; Yin F; Timms R; Moser K
    Crit Care Med; 1976; 4(3):142-3. PubMed ID: 780053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation.
    Suter PM; Fairley HB; Isenberg MD
    Chest; 1978 Feb; 73(2):158-62. PubMed ID: 340159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome.
    Roupie E; Dambrosio M; Servillo G; Mentec H; el Atrous S; Beydon L; Brun-Buisson C; Lemaire F; Brochard L
    Am J Respir Crit Care Med; 1995 Jul; 152(1):121-8. PubMed ID: 7599810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased incidence of sighs (augmented inspiratory efforts) during synchronized intermittent mandatory ventilation (SIMV) in preterm neonates.
    Hummler H; Gerhardt T; Gonzalez A; Claure N; Everett R; Bancalari E
    Pediatr Pulmonol; 1997 Sep; 24(3):195-203. PubMed ID: 9330416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of respiratory system compliance by a flow recording method.
    Darowski M; Gottlieb-Inacio G; Ludwigs U; Hedenstierna G
    Acta Anaesthesiol Scand; 1995 May; 39(4):462-6. PubMed ID: 7676779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intratracheal pulmonary ventilation at low airway pressures in a ventilator-induced model of acute respiratory failure improves lung function and survival.
    Rossi N; Kolobow T; Aprigliano M; Tsuno K; Giacomini M
    Chest; 1998 Oct; 114(4):1147-57. PubMed ID: 9792591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive end-expiratory pressure in weaning patients from controlled ventilation. A prospective randomised trial.
    Feeley TW; Saumarez R; Klick JM; McNabb TG; Skillman JJ
    Lancet; 1975 Oct; 2(7938):725-9. PubMed ID: 52767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intratracheal pulmonary ventilation and continuous positive airway pressure in a sheep model of severe acute respiratory failure.
    Giacomini M; Kolobow T; Reali-Forster C; Trawöger R; Cereda M
    Chest; 1997 Oct; 112(4):1060-7. PubMed ID: 9377918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical ventilation guided by electrical impedance tomography in pediatric acute respiratory distress syndrome.
    Dmytrowich J; Holt T; Schmid K; Hansen G
    J Clin Monit Comput; 2018 Jun; 32(3):503-507. PubMed ID: 28730574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency ventilation. A new approach to respiratory support.
    O'Rourke PP; Crone RK
    JAMA; 1983 Nov; 250(20):2845-7. PubMed ID: 6358544
    [No Abstract]   [Full Text] [Related]  

  • 19. Traditional and nontraditional modes of mechanical ventilation.
    Pierce LN
    Crit Care Nurse; 2000 Feb; 20(1):81-4. PubMed ID: 11871528
    [No Abstract]   [Full Text] [Related]  

  • 20. Assisted ventilation in patients with preexisting cardiopulmonary disease. The effect on systemic oxygen consumption, oxygen transport, and tissue perfusion variables.
    Chin WD; Cheung HW; Driedger AA; Cunningham DG; Sibbald WJ
    Chest; 1985 Oct; 88(4):503-11. PubMed ID: 3899529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.