BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34587815)

  • 21. Screening and Evaluation of Yeast Antagonists for Biological Control of
    Chen PH; Chen RY; Chou JY
    Mycobiology; 2018; 46(1):33-46. PubMed ID: 29998031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS).
    Zhao Y; De Coninck B; Ribeiro B; Nicolaï B; Hertog M
    Int J Food Microbiol; 2023 Oct; 402():110313. PubMed ID: 37421873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First Report of Gray Mold of Strawberry Caused by Botrytis cinerea in South Carolina.
    Fernández-Ortuño D; Li X; Chai W; Schnabel G
    Plant Dis; 2011 Nov; 95(11):1482. PubMed ID: 30731771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA
    Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3.
    Abdallah Y; Yang M; Zhang M; Masum MMI; Ogunyemi SO; Hossain A; An Q; Yan C; Li B
    Lett Appl Microbiol; 2019 May; 68(5):423-429. PubMed ID: 30659625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prevalence of Botrytis Cryptic Species in Strawberry Nursery Transplants and Strawberry and Blueberry Commercial Fields in the Eastern United States.
    Amiri A; Zuniga AI; Peres NA
    Plant Dis; 2018 Feb; 102(2):398-404. PubMed ID: 30673521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries.
    Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F
    Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. (E)-2-hexenal fumigation control the gray mold on fruits via consuming glutathione of Botrytis cinerea.
    Zhang X; Li D; Luo Z; Xu Y
    Food Chem; 2024 Jan; 432():137146. PubMed ID: 37639888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First Report of Fludioxonil Resistance in Botrytis cinerea, the Causal Agent of Gray Mold, from Strawberry Fields in Maryland and South Carolina.
    Fernández-Ortuño D; Grabke A; Bryson PK; Rouse RJ; Rollins P; Schnabel G
    Plant Dis; 2014 May; 98(5):692. PubMed ID: 30708511
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Costa A; Corallo B; Amarelle V; Stewart S; Pan D; Tiscornia S; Fabiano E
    Appl Environ Microbiol; 2022 Jan; 88(2):e0164521. PubMed ID: 34757818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antifungal effects of volatile compounds produced by Tetrapisispora sp. strain 111A-NL1 as a new biocontrol agent on the strawberry grey mold disease.
    Bagheri S; Amini J; Ashengroph M; Koushesh Saba M
    Cell Mol Biol (Noisy-le-grand); 2022 Apr; 68(4):12-23. PubMed ID: 35988271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocontrol of strawberry gray mold caused by
    Yong D; Li Y; Gong K; Yu Y; Zhao S; Duan Q; Ren C; Li A; Fu J; Ni J; Zhang Y; Li R
    Front Microbiol; 2022; 13():1051730. PubMed ID: 36406410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host.
    Samaras A; Karaoglanidis GS; Tzelepis G
    Microbiol Res; 2021 Jul; 248():126752. PubMed ID: 33839506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry.
    Mommaerts V; Put K; Smagghe G
    Pest Manag Sci; 2011 Sep; 67(9):1069-75. PubMed ID: 21394887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and antifungal activity against Pestalotiopsis of a fusaricidin-type compound produced by Paenibacillus polymyxa Y-1.
    Yang A; Zeng S; Yu L; He M; Yang Y; Zhao X; Jiang C; Hu D; Song B
    Pestic Biochem Physiol; 2018 May; 147():67-74. PubMed ID: 29933995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strawberry
    Jia S; Wang Y; Zhang G; Yan Z; Cai Q
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocontrol potential of
    Ajijah N; Fiodor A; Dziurzynski M; Stasiuk R; Pawlowska J; Dziewit L; Pranaw K
    Front Plant Sci; 2023; 14():1288408. PubMed ID: 38143572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological Control of Tomato Gray Mold Caused by
    Sarven MS; Hao Q; Deng J; Yang F; Wang G; Xiao Y; Xiao X
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32183055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome Analysis of the Fruit of Two Strawberry Cultivars "Sunnyberry" and "Kingsberry" That Show Different Susceptibility to
    Lee K; Lee JG; Min K; Choi JH; Lim S; Lee EJ
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.