These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 34587878)
1. Mimicking LysC Proteolysis by 'Arginine Modification-cum-Trypsin Digestion': Comparison of Bottom-up & Middle-down Proteomic Approaches by ESI Q-TOF MS. Pandeswari PB; Chary RN; Kamalanathan AS; Prabhakar S; Sabareesh V Protein Pept Lett; 2021; 28(12):1379-1390. PubMed ID: 34587878 [TBL] [Abstract][Full Text] [Related]
2. Efficient Tandem LysC/Trypsin Digestion in Detergent Conditions. Hakobyan A; Schneider MB; Liesack W; Glatter T Proteomics; 2019 Oct; 19(20):e1900136. PubMed ID: 31536157 [TBL] [Abstract][Full Text] [Related]
3. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study. Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820 [TBL] [Abstract][Full Text] [Related]
4. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955 [TBL] [Abstract][Full Text] [Related]
5. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry. Chen SH; Hsu JL; Lin FS Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949 [TBL] [Abstract][Full Text] [Related]
6. A Multiple Protease Strategy to Optimise the Shotgun Proteomics of Mature Medicinal Cannabis Buds. Vincent D; Ezernieks V; Rochfort S; Spangenberg G Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717952 [TBL] [Abstract][Full Text] [Related]
7. ArgC-Like Digestion: Complementary or Alternative to Tryptic Digestion? Golghalyani V; Neupärtl M; Wittig I; Bahr U; Karas M J Proteome Res; 2017 Feb; 16(2):978-987. PubMed ID: 28051317 [TBL] [Abstract][Full Text] [Related]
9. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Giansanti P; Tsiatsiani L; Low TY; Heck AJ Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950 [TBL] [Abstract][Full Text] [Related]
10. Evolution of a mass spectrometry-grade protease with PTM-directed specificity. Tran DT; Cavett VJ; Dang VQ; Torres HL; Paegel BM Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14686-14691. PubMed ID: 27940920 [TBL] [Abstract][Full Text] [Related]
11. Impact of Protease on Ultraviolet Photodissociation Mass Spectrometry for Bottom-up Proteomics. Greer SM; Parker WR; Brodbelt JS J Proteome Res; 2015 Jun; 14(6):2626-32. PubMed ID: 25950415 [TBL] [Abstract][Full Text] [Related]
12. Characterization and de novo sequencing of Atlantic salmon vitellogenin protein by electrospray tandem and matrix-assisted laser desorption/ionization mass spectrometry. Banoub J; Cohen A; Mansour A; Thibault P Eur J Mass Spectrom (Chichester); 2004; 10(1):121-34. PubMed ID: 15100484 [TBL] [Abstract][Full Text] [Related]
13. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
14. Expanding proteome coverage with orthogonal-specificity α-lytic proteases. Meyer JG; Kim S; Maltby DA; Ghassemian M; Bandeira N; Komives EA Mol Cell Proteomics; 2014 Mar; 13(3):823-35. PubMed ID: 24425750 [TBL] [Abstract][Full Text] [Related]
15. Sequencing Lys-N proteolytic peptides by ESI and MALDI tandem mass spectrometry. Dupré M; Cantel S; Verdié P; Martinez J; Enjalbal C J Am Soc Mass Spectrom; 2011 Feb; 22(2):265-79. PubMed ID: 21472586 [TBL] [Abstract][Full Text] [Related]
16. High sequence coverage by in-capillary proteolysis of native proteins and simultaneous analysis of the resulting peptides by nanoelectrospray ionization-mass spectrometry and tandem mass spectrometry. Pohlentz G; Kölbl S; Peter-Katalinić J Proteomics; 2005 May; 5(7):1758-63. PubMed ID: 15761958 [TBL] [Abstract][Full Text] [Related]
17. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115 [TBL] [Abstract][Full Text] [Related]
18. On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS. Wu HF; Agrawal K; Shrivas K; Lee YH J Mass Spectrom; 2010 Dec; 45(12):1402-8. PubMed ID: 20967754 [TBL] [Abstract][Full Text] [Related]
19. Identification of recombinant human insulin and biosynthetic insulin analogues by multiplexed targeted unlabeled mass spectrometry of proteotypic tryptic peptides. Qasem RJ; Aldawsari AS; Almutairi FE; Alsadoon AS J Pharm Biomed Anal; 2019 Aug; 172():357-363. PubMed ID: 31096094 [TBL] [Abstract][Full Text] [Related]
20. Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics. López-Ferrer D; Petritis K; Robinson EW; Hixson KK; Tian Z; Lee JH; Lee SW; Tolić N; Weitz KK; Belov ME; Smith RD; Pasa-Tolić L Mol Cell Proteomics; 2011 Feb; 10(2):M110.001479. PubMed ID: 20627868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]