These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 34588307)
1. Natural Fe-bearing aluminous bridgmanite in the Katol L6 chondrite. Ghosh S; Tiwari K; Miyahara M; Rohrbach A; Vollmer C; Stagno V; Ohtani E; Ray D Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34588307 [TBL] [Abstract][Full Text] [Related]
2. Low-spin ferric iron in primordial bridgmanite crystallized from a deep magma ocean. Okuda Y; Ohta K; Nishihara Y; Hirao N; Wakamatsu T; Suehiro S; Kawaguchi SI; Ohishi Y Sci Rep; 2021 Sep; 11(1):19471. PubMed ID: 34593901 [TBL] [Abstract][Full Text] [Related]
3. Mineralogy. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Tschauner O; Ma C; Beckett JR; Prescher C; Prakapenka VB; Rossman GR Science; 2014 Nov; 346(6213):1100-2. PubMed ID: 25430766 [TBL] [Abstract][Full Text] [Related]
4. Evidence for a Fe Kurnosov A; Marquardt H; Frost DJ; Ballaran TB; Ziberna L Nature; 2017 Mar; 543(7646):543-546. PubMed ID: 28289289 [TBL] [Abstract][Full Text] [Related]
5. NanoSIMS analysis of water content in bridgmanite at the micron scale: An experimental approach to probe water in Earth's deep mantle. Yang YN; Du Z; Lu W; Qi Y; Zhang YQ; Zhang WF; Zhang PF Front Chem; 2023; 11():1166593. PubMed ID: 37090248 [TBL] [Abstract][Full Text] [Related]
6. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Ismailova L; Bykova E; Bykov M; Cerantola V; McCammon C; Boffa Ballaran T; Bobrov A; Sinmyo R; Dubrovinskaia N; Glazyrin K; Liermann HP; Kupenko I; Hanfland M; Prescher C; Prakapenka V; Svitlyk V; Dubrovinsky L Sci Adv; 2016 Jul; 2(7):e1600427. PubMed ID: 27453945 [TBL] [Abstract][Full Text] [Related]
7. Trace element partitioning in a deep magma ocean and the origin of the Hf-Nd mantle array. Ozawa K; Sakamoto N; Tsutsumi Y; Hirose K; Iizuka T; Yurimoto H Sci Adv; 2024 Aug; 10(33):eadp0021. PubMed ID: 39151010 [TBL] [Abstract][Full Text] [Related]
8. Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Bindi L; Chen M; Xie X Sci Rep; 2017 Feb; 7():42674. PubMed ID: 28198399 [TBL] [Abstract][Full Text] [Related]
9. Calcium dissolution in bridgmanite in the Earth's deep mantle. Ko B; Greenberg E; Prakapenka V; Alp EE; Bi W; Meng Y; Zhang D; Shim SH Nature; 2022 Nov; 611(7934):88-92. PubMed ID: 36261527 [TBL] [Abstract][Full Text] [Related]
10. Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions. Zhang L; Chen Y; Yang Z; Liu L; Yang Y; Dalladay-Simpson P; Wang J; Mao HK Nat Commun; 2024 May; 15(1):4333. PubMed ID: 38773099 [TBL] [Abstract][Full Text] [Related]
11. Investigating Magma Ocean Solidification on Earth Through Laser-Heated Diamond Anvil Cell Experiments. Nabiei F; Badro J; Boukaré CÉ; Hébert C; Cantoni M; Borensztajn S; Wehr N; Gillet P Geophys Res Lett; 2021 Jun; 48(12):e2021GL092446. PubMed ID: 34219835 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Bindi L; Shim SH; Sharp TG; Xie X Sci Adv; 2020 Jan; 6(2):eaay7893. PubMed ID: 31950086 [TBL] [Abstract][Full Text] [Related]
13. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Tsujino N; Nishihara Y; Yamazaki D; Seto Y; Higo Y; Takahashi E Nature; 2016 Nov; 539(7627):81-84. PubMed ID: 27750277 [TBL] [Abstract][Full Text] [Related]
14. Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite. Mashino I; Murakami M; Miyajima N; Petitgirard S Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27899-27905. PubMed ID: 33093206 [TBL] [Abstract][Full Text] [Related]
15. Davemaoite as the mantle mineral with the highest melting temperature. Yin K; Belonoshko AB; Li Y; Lu X Sci Adv; 2023 Dec; 9(49):eadj2660. PubMed ID: 38055828 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and detectability of the bridgmanite to post-perovskite transformation in the Earth's D″ layer. Langrand C; Andrault D; Durand S; Konôpková Z; Hilairet N; Thomas C; Merkel S Nat Commun; 2019 Dec; 10(1):5680. PubMed ID: 31831735 [TBL] [Abstract][Full Text] [Related]
17. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments. Tsujino N; Yamazaki D; Nishihara Y; Yoshino T; Higo Y; Tange Y Sci Adv; 2022 Apr; 8(13):eabm1821. PubMed ID: 35353572 [TBL] [Abstract][Full Text] [Related]
18. Earth's water may have been inherited from material similar to enstatite chondrite meteorites. Piani L; Marrocchi Y; Rigaudier T; Vacher LG; Thomassin D; Marty B Science; 2020 Aug; 369(6507):1110-1113. PubMed ID: 32855337 [TBL] [Abstract][Full Text] [Related]
19. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105 [TBL] [Abstract][Full Text] [Related]
20. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification. Xie L; Yoneda A; Yamazaki D; Manthilake G; Higo Y; Tange Y; Guignot N; King A; Scheel M; Andrault D Nat Commun; 2020 Jan; 11(1):548. PubMed ID: 31992697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]