These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34588478)

  • 1. Fast data-driven learning of parallel MRI sampling patterns for large scale problems.
    Zibetti MVW; Herman GT; Regatte RR
    Sci Rep; 2021 Sep; 11(1):19312. PubMed ID: 34588478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven optimization of sampling patterns for MR brain T
    Menon RG; Zibetti MVW; Regatte RR
    Magn Reson Med; 2023 Jan; 89(1):205-216. PubMed ID: 36129110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Variable Density and Data-Driven K-Space Undersampling for Compressed Sensing Magnetic Resonance Imaging.
    Zijlstra F; Viergever MA; Seevinck PR
    Invest Radiol; 2016 Jun; 51(6):410-9. PubMed ID: 26674209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating 3D MTC-BOOST in patients with congenital heart disease using a joint multi-scale variational neural network reconstruction.
    Fotaki A; Fuin N; Nordio G; Velasco Jimeno C; Qi H; Emmanuel Y; Pushparajah K; Botnar RM; Prieto C
    Magn Reson Imaging; 2022 Oct; 92():120-132. PubMed ID: 35772584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning for undersampled MRI reconstruction.
    Hyun CM; Kim HP; Lee SM; Lee S; Seo JK
    Phys Med Biol; 2018 Jun; 63(13):135007. PubMed ID: 29787383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance rapid MR parameter mapping using model-based deep adversarial learning.
    Liu F; Kijowski R; Feng L; El Fakhri G
    Magn Reson Imaging; 2020 Dec; 74():152-160. PubMed ID: 32980503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction-First Experience.
    Fritz J; Raithel E; Thawait GK; Gilson W; Papp DF
    Invest Radiol; 2016 Jun; 51(6):400-9. PubMed ID: 26685106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction.
    Zhou B; Schlemper J; Dey N; Mohseni Salehi SS; Sheth K; Liu C; Duncan JS; Sofka M
    Med Image Anal; 2022 Oct; 81():102538. PubMed ID: 35926336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated T
    Hilbert T; Sumpf TJ; Weiland E; Frahm J; Thiran JP; Meuli R; Kober T; Krueger G
    J Magn Reson Imaging; 2018 Aug; 48(2):359-368. PubMed ID: 29446508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating Learning Approach for Variational Networks and Undersampling Pattern in Parallel MRI Applications.
    Zibetti MVW; Knoll F; Regatte RR
    IEEE Trans Comput Imaging; 2022; 8():449-461. PubMed ID: 35795003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPARKLING: variable-density k-space filling curves for accelerated T
    Lazarus C; Weiss P; Chauffert N; Mauconduit F; El Gueddari L; Destrieux C; Zemmoura I; Vignaud A; Ciuciu P
    Magn Reson Med; 2019 Jun; 81(6):3643-3661. PubMed ID: 30773679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressed sensing MRI with variable density averaging (CS-VDA) outperforms full sampling at low SNR.
    Schoormans J; Strijkers GJ; Hansen AC; Nederveen AJ; Coolen BF
    Phys Med Biol; 2020 Feb; 65(4):045004. PubMed ID: 31851959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint total variation-based reconstruction of multiparametric magnetic resonance images for mapping tissue types.
    Pandey S; Snider AD; Moreno WA; Ravi H; Bilgin A; Raghunand N
    NMR Biomed; 2021 Dec; 34(12):e4597. PubMed ID: 34390047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cell tracking using time-lapse MRI with variable temporal resolution Cartesian sampling.
    Armstrong M; Wilken E; Freppon F; Masthoff M; Faber C; Xiao D
    Magn Reson Med; 2023 Dec; 90(6):2443-2453. PubMed ID: 37466029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm.
    Jiang M; Jin J; Liu F; Yu Y; Xia L; Wang Y; Crozier S
    Magn Reson Imaging; 2013 Sep; 31(7):1218-27. PubMed ID: 23684962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.