These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34588504)
1. Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors. Soltani M; Souri M; Moradi Kashkooli F Sci Rep; 2021 Sep; 11(1):19350. PubMed ID: 34588504 [TBL] [Abstract][Full Text] [Related]
2. Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors. Souri M; Kiani Shahvandi M; Chiani M; Moradi Kashkooli F; Farhangi A; Mehrabi MR; Rahmim A; Savage VM; Soltani M Drug Deliv; 2023 Dec; 30(1):2186312. PubMed ID: 36895188 [TBL] [Abstract][Full Text] [Related]
3. Intratumoral Distribution and pH-Dependent Drug Release of High Molecular Weight HPMA Copolymer Drug Conjugates Strongly Depend on Specific Tumor Substructure and Microenvironment. Noack AK; Lucas H; Chytil P; Etrych T; Mäder K; Mueller T Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825790 [TBL] [Abstract][Full Text] [Related]
4. Charge-Switchable nanoparticles to enhance tumor penetration and accumulation. Souri M; Golzaryan A; Soltani M Eur J Pharm Biopharm; 2024 Jun; 199():114310. PubMed ID: 38705311 [TBL] [Abstract][Full Text] [Related]
5. Zhang Y; Ji W; He L; Chen Y; Ding X; Sun Y; Hu S; Yang H; Huang W; Zhang Y; Liu F; Xia L Theranostics; 2018; 8(6):1690-1705. PubMed ID: 29556350 [No Abstract] [Full Text] [Related]
6. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo. Chen WL; Yang SD; Li F; Qu CX; Liu Y; Wang Y; Wang DD; Zhang XN Acta Biomater; 2018 Nov; 81():219-230. PubMed ID: 30267887 [TBL] [Abstract][Full Text] [Related]
7. Facial Solid-Phase Synthesis of Well-Defined Zwitterionic Amphiphiles for Enhanced Anticancer Drug Delivery. Wang L; Ji X; Guo D; Shi C; Luo J Mol Pharm; 2021 Jun; 18(6):2349-2359. PubMed ID: 33983742 [TBL] [Abstract][Full Text] [Related]
8. A comparative study between conventional chemotherapy and photothermal activated nano-sized targeted drug delivery to solid tumor. Kiani Shahvandi M; Souri M; Tavasoli S; Moradi Kashkooli F; Kar S; Soltani M Comput Biol Med; 2023 Nov; 166():107574. PubMed ID: 37839220 [TBL] [Abstract][Full Text] [Related]
9. Using Properties of Tumor Microenvironments for Controlling Local, On-Demand Delivery from Biopolymer-Based Nanocarriers. Alshememry AK; El-Tokhy SS; Unsworth LD Curr Pharm Des; 2017; 23(35):5358-5391. PubMed ID: 28530543 [TBL] [Abstract][Full Text] [Related]
10. PEGylated-PLGA Nanoparticles Coated with pH-Responsive Tannic Acid-Fe(III) Complexes for Reduced Premature Doxorubicin Release and Enhanced Targeting in Breast Cancer. Hu F; Zhang R; Guo W; Yan T; He X; Hu F; Ren F; Ma X; Lei J; Zheng W Mol Pharm; 2021 Jun; 18(6):2161-2173. PubMed ID: 32515968 [TBL] [Abstract][Full Text] [Related]
11. Nanocarriers responsive to a hypoxia gradient facilitate enhanced tumor penetration and improved anti-tumor efficacy. Zhen J; Tian S; Liu Q; Zheng C; Zhang Z; Ding Y; An Y; Liu Y; Shi L Biomater Sci; 2019 Jul; 7(7):2986-2995. PubMed ID: 31106796 [TBL] [Abstract][Full Text] [Related]
12. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Qian Y; Wang Y; Jia F; Wang Z; Yue C; Zhang W; Hu Z; Wang W Biomaterials; 2019 Jan; 188():96-106. PubMed ID: 30339943 [TBL] [Abstract][Full Text] [Related]
13. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Yang Y; Wu H; Liu B; Liu Z Adv Drug Deliv Rev; 2021 Dec; 179():114004. PubMed ID: 34662672 [TBL] [Abstract][Full Text] [Related]
14. Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications. Liang Y; Wu J; Yan Y; Wang Y; Zhao H; Wang X; Chang S; Li S Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337266 [TBL] [Abstract][Full Text] [Related]
15. Smart Drug Delivery Systems in Cancer Therapy. Unsoy G; Gunduz U Curr Drug Targets; 2018 Feb; 19(3):202-212. PubMed ID: 27033191 [TBL] [Abstract][Full Text] [Related]
16. Tumor Microenvironment Sensitive Nanocarriers for Bioimaging and Therapeutics. Park H; Saravanakumar G; Kim J; Lim J; Kim WJ Adv Healthc Mater; 2021 Mar; 10(5):e2000834. PubMed ID: 33073497 [TBL] [Abstract][Full Text] [Related]
17. Tumor microenvironment-specific nanoparticles activatable by stepwise transformation. Ko H; Son S; Jeon J; Thambi T; Kwon S; Chae YS; Kang YM; Park JH J Control Release; 2016 Jul; 234():68-78. PubMed ID: 27164544 [TBL] [Abstract][Full Text] [Related]
18. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Peng N; Wu B; Wang L; He W; Ai Z; Zhang X; Wang Y; Fan L; Ye Q Biomater Sci; 2016 Nov; 4(12):1802-1813. PubMed ID: 27792228 [TBL] [Abstract][Full Text] [Related]
19. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. He Y; Su Z; Xue L; Xu H; Zhang C J Control Release; 2016 May; 229():80-92. PubMed ID: 26945977 [TBL] [Abstract][Full Text] [Related]
20. Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. Abumanhal-Masarweh H; Koren L; Zinger A; Yaari Z; Krinsky N; Kaneti G; Dahan N; Lupu-Haber Y; Suss-Toby E; Weiss-Messer E; Schlesinger-Laufer M; Shainsky-Roitman J; Schroeder A J Control Release; 2019 Feb; 296():1-13. PubMed ID: 30615983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]