These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34588553)
1. A numerical study of chemical reaction in a nanofluid flow due to rotating disk in the presence of magnetic field. Ramzan M; Khan NS; Kumam P; Khan R Sci Rep; 2021 Sep; 11(1):19399. PubMed ID: 34588553 [TBL] [Abstract][Full Text] [Related]
2. Rotating flow assessment of magnetized mixture fluid suspended with hybrid nanoparticles and chemical reactions of species. Khan NS; Shah Q; Sohail A; Ullah Z; Kaewkhao A; Kumam P; Zubair S; Ullah N; Thounthong P Sci Rep; 2021 May; 11(1):11277. PubMed ID: 34050201 [TBL] [Abstract][Full Text] [Related]
3. Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christove heat flux toward the stretching surface. Ramzan M; Shah Z; Kumam P; Khan W; Watthayu W; Kumam W PLoS One; 2022; 17(4):e0264208. PubMed ID: 35421096 [TBL] [Abstract][Full Text] [Related]
4. Entropy Generation and Heat Transfer Analysis in MHD Unsteady Rotating Flow for Aqueous Suspensions of Carbon Nanotubes with Nonlinear Thermal Radiation and Viscous Dissipation Effect. Jawad M; Shah Z; Khan A; Khan W; Kumam P; Islam S Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267206 [TBL] [Abstract][Full Text] [Related]
5. Intelligent computing for MHD radiative Von Kármán Casson nanofluid along Darcy-Fochheimer medium with activation energy. Raja MAZ; Nisar KS; Shoaib M; Abukhaled M; Riaz A Heliyon; 2023 Oct; 9(10):e20911. PubMed ID: 37928395 [TBL] [Abstract][Full Text] [Related]
6. Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Gul T; Kashifullah ; Bilal M; Alghamdi W; Asjad MI; Abdeljawad T Sci Rep; 2021 Jan; 11(1):1180. PubMed ID: 33441841 [TBL] [Abstract][Full Text] [Related]
7. Entropy Generation Optimization in Squeezing Magnetohydrodynamics Flow of Casson Nanofluid with Viscous Dissipation and Joule Heating Effect. Zubair M; Shah Z; Dawar A; Islam S; Kumam P; Khan A Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267461 [TBL] [Abstract][Full Text] [Related]
8. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Hafeez A; Khan M; Ahmed J Comput Methods Programs Biomed; 2020 Jul; 191():105342. PubMed ID: 32113101 [TBL] [Abstract][Full Text] [Related]
9. Brownian Motion and Thermophoresis Effects on MHD Three Dimensional Nanofluid Flow with Slip Conditions and Joule Dissipation Due to Porous Rotating Disk. Alreshidi NA; Shah Z; Dawar A; Kumam P; Shutaywi M; Watthayu W Molecules; 2020 Feb; 25(3):. PubMed ID: 32046124 [TBL] [Abstract][Full Text] [Related]
10. Thermal Analysis of 3D Electromagnetic Radiative Nanofluid Flow with Suction/Blowing: Darcy-Forchheimer Scheme. Alotaibi H; Eid MR Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832806 [TBL] [Abstract][Full Text] [Related]
11. Impact of autocatalytic chemical reaction in an Ostwald-de-Waele nanofluid flow past a rotating disk with heterogeneous catalysis. Yu B; Ramzan M; Riasat S; Kadry S; Chu YM; Malik MY Sci Rep; 2021 Jul; 11(1):15526. PubMed ID: 34330971 [TBL] [Abstract][Full Text] [Related]
12. Significance low oscillating magnetic field and Hall current in the nano-ferrofluid flow past a rotating stretchable disk. Ramzan M; Riasat S; Zhang Y; Nisar KS; Badruddin IA; Ahammad NA; Ghazwani HAS Sci Rep; 2021 Dec; 11(1):23204. PubMed ID: 34853375 [TBL] [Abstract][Full Text] [Related]
13. Instability analysis for MHD boundary layer flow of nanofluid over a rotating disk with anisotropic and isotropic roughness. Iqra T; Nadeem S; Ghazwani HA; Duraihem FZ; Alzabut J Heliyon; 2024 Mar; 10(6):e26779. PubMed ID: 38509923 [TBL] [Abstract][Full Text] [Related]
14. Computational Framework of Magnetized MgO-Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings. Bhatti MM; Bég OA; Abdelsalam SI Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407169 [TBL] [Abstract][Full Text] [Related]
15. Existence of dual solution for MHD boundary layer flow over a stretching/shrinking surface in the presence of thermal radiation and porous media: KKL nanofluid model. Ul Haq R; Zahoor Z; Shah SS Heliyon; 2023 Nov; 9(11):e20923. PubMed ID: 38027879 [TBL] [Abstract][Full Text] [Related]
16. Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation. Khan Z; Srivastava HM; Mohammed PO; Jawad M; Jan R; Nonlaopon K Math Biosci Eng; 2022 Sep; 19(12):14116-14141. PubMed ID: 36654083 [TBL] [Abstract][Full Text] [Related]
17. Darcy flow of convective and radiative Maxwell nanofluid over a porous disk with the influence of activation energy. Khan MN; Hafeez A; Lone SA; Almutlak SA; Elseey IE Heliyon; 2023 Sep; 9(9):e18003. PubMed ID: 37809991 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation of MHD flow of hyperbolic tangent nanofluid over a non-linear stretching sheet. Ahmed I; Alghamdi M; Amjad M; Aziz F; Akbar T; Muhammad T Heliyon; 2023 Jul; 9(7):e17658. PubMed ID: 37449134 [TBL] [Abstract][Full Text] [Related]
19. Effects of Hall Current and Viscous Dissipation on Bioconvection Transport of Nanofluid over a Rotating Disk with Motile Microorganisms. Alzahrani AK Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432313 [TBL] [Abstract][Full Text] [Related]
20. Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition. Asghar A; Chandio AF; Shah Z; Vrinceanu N; Deebani W; Shutaywi M; Lund LA Heliyon; 2023 Feb; 9(2):e13189. PubMed ID: 36747513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]