These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34588564)

  • 21. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25.
    Ryngajłło M; Jacek P; Cielecka I; Kalinowska H; Bielecki S
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6673-6688. PubMed ID: 31168651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coproduction of bacterial cellulose and pear vinegar by fermentation of pear peel and pomace.
    Ma X; Yuan H; Wang H; Yu H
    Bioprocess Biosyst Eng; 2021 Nov; 44(11):2231-2244. PubMed ID: 34165619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenomic and comparative analyses support the reclassification of several
    Brandão PR; Crespo MTB; Nascimento FX
    Int J Syst Evol Microbiol; 2022 Feb; 72(2):. PubMed ID: 35175916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives.
    Ryngajłło M; Jędrzejczak-Krzepkowska M; Kubiak K; Ludwicka K; Bielecki S
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6565-6585. PubMed ID: 32529377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber.
    Jang WD; Kim TY; Kim HU; Shim WY; Ryu JY; Park JH; Lee SY
    Biotechnol Bioeng; 2019 Dec; 116(12):3372-3381. PubMed ID: 31433066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased production of bacterial cellulose as starting point for scaled-up applications.
    Gullo M; Sola A; Zanichelli G; Montorsi M; Messori M; Giudici P
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8115-8127. PubMed ID: 28965208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutation-based selection and analysis of Komagataeibacter hansenii HDM1-3 for improvement in bacterial cellulose production.
    Li Y; Tian J; Tian H; Chen X; Ping W; Tian C; Lei H
    J Appl Microbiol; 2016 Nov; 121(5):1323-1334. PubMed ID: 27455093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Komagataeibacter cocois sp. nov., a novel cellulose-producing strain isolated from coconut milk.
    Liu LX; Liu SX; Wang YM; Bi JC; Chen HM; Deng J; Zhang C; Hu QS; Li CF
    Int J Syst Evol Microbiol; 2018 Oct; 68(10):3125-3131. PubMed ID: 30132753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of cellulose synthesis in a high-producing acetic acid bacterium Komagataeibacter hansenii.
    Bimmer M; Reimer M; Klingl A; Ludwig C; Zollfrank C; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2023 May; 107(9):2947-2967. PubMed ID: 36930278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen
    Kaczmarek M; Jędrzejczak-Krzepkowska M; Ludwicka K
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens.
    Taweecheep P; Naloka K; Matsutani M; Yakushi T; Matsushita K; Theeragool G
    Carbohydr Polym; 2019 Dec; 226():115243. PubMed ID: 31582059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissection of exopolysaccharide biosynthesis in Kozakia baliensis.
    Brandt JU; Jakob F; Behr J; Geissler AJ; Vogel RF
    Microb Cell Fact; 2016 Oct; 15(1):170. PubMed ID: 27716345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20.
    Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D
    Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of an FNR-like oxygen sensor in Komagataeibacter medellinensis for survival under oxygen depletion.
    Watanabe S; Shirai M; Kishi M; Ohnishi Y
    Biosci Biotechnol Biochem; 2021 Aug; 85(9):2065-2075. PubMed ID: 34191007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis.
    Li ZY; Azi F; Ge ZW; Liu YF; Yin XT; Dong MS
    Int J Biol Macromol; 2021 Nov; 191():211-221. PubMed ID: 34547311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture.
    Gomes RJ; Ida EI; Spinosa WA
    Braz J Microbiol; 2023 Jun; 54(2):703-713. PubMed ID: 36800074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
    Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L
    Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices.
    Chinga-Carrasco G
    Biomacromolecules; 2018 Mar; 19(3):701-711. PubMed ID: 29489338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea.
    Li J; Chen G; Zhang R; Wu H; Zeng W; Liang Z
    Biotechnol Appl Biochem; 2019 Jan; 66(1):108-118. PubMed ID: 30359481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.