These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 34588879)
41. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Veerakumar K; Govindarajan M; Rajeswary M; Muthukumaran U Parasitol Res; 2014 May; 113(5):1775-85. PubMed ID: 24647984 [TBL] [Abstract][Full Text] [Related]
42. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Lallawmawma H; Sathishkumar G; Sarathbabu S; Ghatak S; Sivaramakrishnan S; Gurusubramanian G; Kumar NS Environ Sci Pollut Res Int; 2015 Nov; 22(22):17753-68. PubMed ID: 26154045 [TBL] [Abstract][Full Text] [Related]
43. Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Manimegalai T; Raguvaran K; Kalpana M; Maheswaran R Environ Sci Pollut Res Int; 2020 Dec; 27(34):43103-43116. PubMed ID: 32725570 [TBL] [Abstract][Full Text] [Related]
44. Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities. Alowaiesh BF; Alhaithloul HAS; Saad AM; Hassanin AA Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987100 [TBL] [Abstract][Full Text] [Related]
45. Green synthesis of silver nanoparticles from peel extract of Chrysophyllum albidum fruit and their antimicrobial synergistic potentials and biofilm inhibition properties. Ankudze B; Neglo D Biometals; 2023 Aug; 36(4):865-876. PubMed ID: 36586061 [TBL] [Abstract][Full Text] [Related]
46. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Salunkhe RB; Patil SV; Patil CD; Salunke BK Parasitol Res; 2011 Sep; 109(3):823-31. PubMed ID: 21451993 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of Biogenic Silver Nanoparticles Synthesized from Vegetable Waste. Kiani BH; Arshad I; Najeeb S; Okla MK; Almanaa TN; Al-Qahtani WH; Abdel-Maksoud MA Int J Nanomedicine; 2023; 18():6527-6544. PubMed ID: 37965280 [TBL] [Abstract][Full Text] [Related]
48. Green Synthesis of Silver Nanoparticles of Palei NN; Krishnan SN; Jayaraman R; Reddy SH; Balaji A; Samanta MK; Mohanta BC Recent Pat Nanotechnol; 2023; 17(3):270-280. PubMed ID: 35619324 [TBL] [Abstract][Full Text] [Related]
49. Green Approach for Synthesis of Silver Nanoparticles with Antimicrobial and Antioxidant Properties from Grapevine Waste Extracts. Baroi AM; Fierascu I; Ghizdareanu AI; Trica B; Fistos T; Matei Brazdis RI; Fierascu RC; Firinca C; Sardarescu ID; Avramescu SM Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673798 [TBL] [Abstract][Full Text] [Related]
50. Synthesis of silver nanoparticles using Padalia H; Chanda S Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):354-366. PubMed ID: 33792441 [TBL] [Abstract][Full Text] [Related]
51. Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Algotiml R; Gab-Alla A; Seoudi R; Abulreesh HH; El-Readi MZ; Elbanna K Sci Rep; 2022 Feb; 12(1):2421. PubMed ID: 35165346 [TBL] [Abstract][Full Text] [Related]
52. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Santhosh SB; Ragavendran C; Natarajan D J Photochem Photobiol B; 2015 Dec; 153():184-90. PubMed ID: 26410042 [TBL] [Abstract][Full Text] [Related]
53. Determination of Antioxidant Activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), Electrochemical and Microbiological Analyses of Silver Nanoparticles Using the Aqueous Leaf Extract of Pilaquinga F; Morey J; Fernandez L; Espinoza-Montero P; Moncada-Basualto M; Pozo-Martinez J; Olea-Azar C; Bosch R; Meneses L; Debut A; Piña MLN Int J Nanomedicine; 2021; 16():5879-5894. PubMed ID: 34471354 [TBL] [Abstract][Full Text] [Related]
54. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Kokila T; Ramesh PS; Geetha D Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):467-473. PubMed ID: 27156649 [TBL] [Abstract][Full Text] [Related]
55. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Subarani S; Sabhanayakam S; Kamaraj C Parasitol Res; 2013 Feb; 112(2):487-99. PubMed ID: 23064800 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Kumar KR; Nattuthurai N; Gopinath P; Mariappan T Parasitol Res; 2015 Feb; 114(2):411-7. PubMed ID: 25373452 [TBL] [Abstract][Full Text] [Related]
57. Potential of phenolic compounds from pomegranate ( Saparbekova AA; Kantureyeva GO; Kudasova DE; Konarbayeva ZK; Latif AS Saudi J Biol Sci; 2023 Feb; 30(2):103553. PubMed ID: 36632073 [TBL] [Abstract][Full Text] [Related]
58. Biosynthesis, characterization and anti-dengue vector activity of silver nanoparticles prepared from Rasool S; Raza MA; Manzoor F; Kanwal Z; Riaz S; Iqbal MJ; Naseem S R Soc Open Sci; 2020 Sep; 7(9):200540. PubMed ID: 33047022 [TBL] [Abstract][Full Text] [Related]
59. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. Nasiriboroumand M; Montazer M; Barani H J Photochem Photobiol B; 2018 Feb; 179():98-104. PubMed ID: 29351880 [TBL] [Abstract][Full Text] [Related]
60. GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity. Suman TY; Rajasree SR; Jayaseelan C; Mary RR; Gayathri S; Aranganathan L; Remya RR Environ Sci Pollut Res Int; 2016 Feb; 23(3):2705-14. PubMed ID: 26438369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]