These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34588950)

  • 1. Influence of Augmented Visual Feedback on Balance Control in Unilateral Transfemoral Amputees.
    Fuchs K; Krauskopf T; Lauck TB; Klein L; Mueller M; Herget GW; Von Tscharner V; Stutzig N; Stieglitz T; Pasluosta C
    Front Neurosci; 2021; 15():727527. PubMed ID: 34588950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation.
    Claret CR; Herget GW; Kouba L; Wiest D; Adler J; von Tscharner V; Stieglitz T; Pasluosta C
    J Neuroeng Rehabil; 2019 Sep; 16(1):115. PubMed ID: 31521190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermuscular coupling and postural control in unilateral transfemoral amputees - a pilot study
    Pasluosta C; Lauck TB; Krauskopf T; Klein L; Mueller M; Herget GW; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3815-3818. PubMed ID: 33018832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unilateral transfemoral amputees exhibit altered strength and dynamics of muscular co-activation modulated by visual feedback.
    Krauskopf T; Lauck TB; Klein L; Beusterien M; Mueller M; Von Tscharner V; Mehring C; Herget GW; Stieglitz T; Pasluosta C
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35100571
    [No Abstract]   [Full Text] [Related]  

  • 5. Standing posture and balance modalities in unilateral transfemoral and transtibial amputees.
    Toumi A; Simoneau-Buessinger É; Bassement J; Barbier F; Gillet C; Allard P; Leteneur S
    J Bodyw Mov Ther; 2021 Jul; 27():634-639. PubMed ID: 34391299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postural Sway in Lower Extremity Amputees and Older Adults May Suggest Increased Fall Risk in Amputees.
    Bateni H
    Can Prosthet Orthot J; 2020; 3(2):33804. PubMed ID: 37614402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balance control on a moving platform in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Hof AL; Halbertsma JP; Postema K
    Gait Posture; 2008 Aug; 28(2):222-8. PubMed ID: 18207407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.
    Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T
    J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-explained cortical correlates of transfemoral amputees during balancing with vibrotactile feedback: A pilot study.
    Khajuria A; Joshi D
    Med Eng Phys; 2022 Mar; 101():103772. PubMed ID: 35232551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory neuroprosthesis improves postural stability during Sensory Organization Test in lower-limb amputees.
    Charkhkar H; Christie BP; Triolo RJ
    Sci Rep; 2020 Apr; 10(1):6984. PubMed ID: 32332861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of vibrotactile feedback on postural sway in trans-femoral amputees: A wavelet analysis.
    Khajuria A; Joshi D
    J Biomech; 2021 Jan; 115():110145. PubMed ID: 33248704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Validation of a Real-Time Visual Feedback System to Improve Minimum Toe Clearance (mTC) in Transfemoral Amputees.
    Tiwari A; Joshi D
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1711-1722. PubMed ID: 34398756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Haptic Feedback System for Phase-Based Sensory Restoration in Above-Knee Prosthetic Leg Users.
    Plauche A; Villarreal D; Gregg RD
    IEEE Trans Haptics; 2016; 9(3):421-6. PubMed ID: 27323375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
    Kilby MC; Molenaar PC; Slobounov SM; Newell KM
    Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural sway and active balance performance in highly active lower-limb amputees.
    Buckley JG; O'Driscoll D; Bennett SJ
    Am J Phys Med Rehabil; 2002 Jan; 81(1):13-20. PubMed ID: 11807327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mirror feedback on upright stance control in elderly transfemoral amputees.
    Hlavackova P; Fristios J; Cuisinier R; Pinsault N; Janura M; Vuillerme N
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1960-3. PubMed ID: 19887224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance control deficits in individuals with a transtibial amputation with and without visual input.
    Moisan G; Miramand L; Younesian H; Turcot K
    Prosthet Orthot Int; 2022 Apr; 46(2):134-139. PubMed ID: 35412521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of pain and a secondary task on postural sway during standing.
    Hirata RP; Thomsen MJ; Larsen FG; Støttrup N; Duarte M
    Hum Mov Sci; 2021 Oct; 79():102863. PubMed ID: 34418802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence analysis of trunk and leg acceleration reveals altered postural sway strategy during standing in persons with multiple sclerosis.
    Huisinga J; Mancini M; Veys C; Spain R; Horak F
    Hum Mov Sci; 2018 Apr; 58():330-336. PubMed ID: 29277247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.