These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34589522)

  • 1. Comparing Deep Reinforcement Learning Algorithms' Ability to Safely Navigate Challenging Waters.
    Larsen TN; Teigen HØ; Laache T; Varagnolo D; Rasheed A
    Front Robot AI; 2021; 8():738113. PubMed ID: 34589522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-UAV autonomous collision avoidance based on PPO-GIC algorithm with CNN-LSTM fusion network.
    Liang C; Liu L; Liu C
    Neural Netw; 2023 May; 162():21-33. PubMed ID: 36878168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs.
    Fan Y; Sun Z; Wang G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles.
    Havenstrøm ST; Rasheed A; San O
    Front Robot AI; 2020; 7():566037. PubMed ID: 33585570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty.
    Kim M; Kim JS; Choi MS; Park JH
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path Planning for Unmanned Surface Vehicles with Strong Generalization Ability Based on Improved Proximal Policy Optimization.
    Sun P; Yang C; Zhou X; Wang W
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Robot Path Planning Method Based on Deep Reinforcement Learning.
    Han H; Wang J; Kuang L; Han X; Xue H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Control Method with Reinforcement Learning for Urban Un-Signalized Intersection in Hybrid Traffic Environment.
    Shi Y; Liu Y; Qi Y; Han Q
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path Following Control for Underactuated Airships with Magnitude and Rate Saturation.
    Gou H; Guo X; Lou W; Ou J; Yuan J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33333882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved Distributed Sampling PPO Algorithm Based on Beta Policy for Continuous Global Path Planning Scheme.
    Xiao Q; Jiang L; Wang M; Zhang X
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation Control With Collision Avoidance Through Deep Reinforcement Learning Using Model-Guided Demonstration.
    Sui Z; Pu Z; Yi J; Wu S
    IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2358-2372. PubMed ID: 32673195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment.
    Tang W; Cheng C; Ai H; Chen L
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task-Oriented Deep Reinforcement Learning for Robotic Skill Acquisition and Control.
    Xiang G; Su J
    IEEE Trans Cybern; 2021 Feb; 51(2):1056-1069. PubMed ID: 31725408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning path tracking controllers for autonomous cars using reinforcement learning.
    Vilaça Carrasco A; Silva Sequeira J
    PeerJ Comput Sci; 2023; 9():e1550. PubMed ID: 38077605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Path-Integral-Based Reinforcement Learning Algorithm for Path Following of an Autoassembly Mobile Robot.
    Zhu W; Guo X; Fang Y; Zhang X
    IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4487-4499. PubMed ID: 31880564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning.
    Lambert R; Li J; Wu LF; Mahmoudian N
    Front Robot AI; 2021; 8():739023. PubMed ID: 34616776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.