These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34590103)
1. Impact of antimicrobial peptides on Nielsen JE; Prévost SF; Jenssen H; Lund R Faraday Discuss; 2021 Dec; 232(0):203-217. PubMed ID: 34590103 [TBL] [Abstract][Full Text] [Related]
2. Molecular Transport and Growth of Lipid Vesicles Exposed to Antimicrobial Peptides. Nielsen JE; Lund R Langmuir; 2022 Jan; 38(1):374-384. PubMed ID: 34902242 [TBL] [Abstract][Full Text] [Related]
3. Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. Nielsen JE; Bjørnestad VA; Pipich V; Jenssen H; Lund R J Colloid Interface Sci; 2021 Jan; 582(Pt B):793-802. PubMed ID: 32911421 [TBL] [Abstract][Full Text] [Related]
4. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
5. Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods: the case of indolicidin. Nielsen JE; Bjørnestad VA; Lund R Soft Matter; 2018 Nov; 14(43):8750-8763. PubMed ID: 30358793 [TBL] [Abstract][Full Text] [Related]
6. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
7. Antimicrobial Peptides Increase Line Tension in Raft-Forming Lipid Membranes. Koynarev VR; Borgos KKA; Kohlbrecher J; Porcar L; Nielsen JE; Lund R J Am Chem Soc; 2024 Jul; 146(30):20891-20903. PubMed ID: 39018511 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial peptide induced colloidal transformations in bacteria-mimetic vesicles: Combining in silico tools and experimental methods. Freire RVM; Pillco-Valencia Y; da Hora GCA; Ramstedt M; Sandblad L; Soares TA; Salentinig S J Colloid Interface Sci; 2021 Aug; 596():352-363. PubMed ID: 33839361 [TBL] [Abstract][Full Text] [Related]
10. Acetaminophen Interactions with Phospholipid Vesicles Induced Changes in Morphology and Lipid Dynamics. De Mel JU; Gupta S; Harmon S; Stingaciu L; Roth EW; Siebenbuerger M; Bleuel M; Schneider GJ Langmuir; 2021 Aug; 37(31):9560-9570. PubMed ID: 34328747 [TBL] [Abstract][Full Text] [Related]
11. The influence of rifabutin on human and bacterial membrane models: implications for its mechanism of action. Pinheiro M; Nunes C; Caio JM; Moiteiro C; Lúcio M; Brezesinski G; Reis S J Phys Chem B; 2013 May; 117(20):6187-93. PubMed ID: 23617457 [TBL] [Abstract][Full Text] [Related]
12. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. Oñate-Garzón J; Manrique-Moreno M; Trier S; Leidy C; Torres R; Patiño E J Antibiot (Tokyo); 2017 Mar; 70(3):238-245. PubMed ID: 27999446 [TBL] [Abstract][Full Text] [Related]
14. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Zhao H; Mattila JP; Holopainen JM; Kinnunen PK Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308 [TBL] [Abstract][Full Text] [Related]
16. The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes. Heller WT; Zolnierczuk PA Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):565-572. PubMed ID: 30550881 [TBL] [Abstract][Full Text] [Related]
17. Effects of fluidity and charge density on the morphology of a bicellar mixture - A SANS study. Li M; Heller WT; Liu CH; Gao CY; Cai Y; Hou Y; Nieh MP Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183315. PubMed ID: 32304755 [TBL] [Abstract][Full Text] [Related]
18. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
19. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
20. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]