These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34590255)

  • 1. Microfluidics for Single-Cell Study of Antibiotic Tolerance and Persistence Induced by Nutrient Limitation.
    Moreno-Gámez S; Dal Co A; van Vliet S; Ackermann M
    Methods Mol Biol; 2021; 2357():107-124. PubMed ID: 34590255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations.
    Dal Co A; van Vliet S; Ackermann M
    Philos Trans R Soc Lond B Biol Sci; 2019 Nov; 374(1786):20190080. PubMed ID: 31587651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotic resistance of bacterial biofilms.
    Høiby N; Bjarnsholt T; Givskov M; Molin S; Ciofu O
    Int J Antimicrob Agents; 2010 Apr; 35(4):322-32. PubMed ID: 20149602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms.
    Yan J; Bassler BL
    Cell Host Microbe; 2019 Jul; 26(1):15-21. PubMed ID: 31295420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conceptual Model of Biofilm Antibiotic Tolerance That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology.
    Stewart PS; White B; Boegli L; Hamerly T; Williamson KS; Franklin MJ; Bothner B; James GA; Fisher S; Vital-Lopez FG; Wallqvist A
    J Bacteriol; 2019 Nov; 201(22):. PubMed ID: 31501280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of nutritional stress on drug susceptibility and biofilm structures of Burkholderia pseudomallei and Burkholderia thailandensis grown in static and microfluidic systems.
    Anutrakunchai C; Bolscher JGM; Krom BP; Kanthawong S; Chareonsudjai S; Taweechaisupapong S
    PLoS One; 2018; 13(3):e0194946. PubMed ID: 29579106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation.
    Roberts ME; Stewart PS
    Antimicrob Agents Chemother; 2004 Jan; 48(1):48-52. PubMed ID: 14693517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Microfluidic Chip for Studies of the Dynamics of Antibiotic Resistance Selection in Bacterial Biofilms.
    Tang PC; Eriksson O; Sjögren J; Fatsis-Kavalopoulos N; Kreuger J; Andersson DI
    Front Cell Infect Microbiol; 2022; 12():896149. PubMed ID: 35619647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria.
    Nguyen D; Joshi-Datar A; Lepine F; Bauerle E; Olakanmi O; Beer K; McKay G; Siehnel R; Schafhauser J; Wang Y; Britigan BE; Singh PK
    Science; 2011 Nov; 334(6058):982-6. PubMed ID: 22096200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bacterial antibiotic resistance accelerator and applications.
    Bos J; Austin RH
    Methods Cell Biol; 2018; 147():41-57. PubMed ID: 30165962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial persistence as a phenotypic switch.
    Balaban NQ; Merrin J; Chait R; Kowalik L; Leibler S
    Science; 2004 Sep; 305(5690):1622-5. PubMed ID: 15308767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Evolution-On-A-Chip Reveals New Mutations that Cause Antibiotic Resistance.
    Zoheir AE; Späth GP; Niemeyer CM; Rabe KS
    Small; 2021 Mar; 17(10):e2007166. PubMed ID: 33458946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced disinfection of bacterial populations by nutrient and antibiotic challenge timing.
    Acar N; Cogan NG
    Math Biosci; 2019 Jul; 313():12-32. PubMed ID: 31047899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic treatment of biofilm infections.
    Ciofu O; Rojo-Molinero E; Macià MD; Oliver A
    APMIS; 2017 Apr; 125(4):304-319. PubMed ID: 28407419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.
    Straub H; Eberl L; Zinn M; Rossi RM; Maniura-Weber K; Ren Q
    J Nanobiotechnology; 2020 Nov; 18(1):166. PubMed ID: 33176791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective antibiotic resistance: mechanisms and implications.
    Vega NM; Gore J
    Curr Opin Microbiol; 2014 Oct; 21():28-34. PubMed ID: 25271119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance.
    Sadiq FA; Flint S; Li Y; Ou K; Yuan L; He GQ
    Future Microbiol; 2017 Sep; 12():1087-1107. PubMed ID: 28783379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerant Small-colony Variants Form Prior to Resistance Within a Staphylococcus aureus Biofilm Based on Antibiotic Selective Pressure.
    Manasherob R; Mooney JA; Lowenberg DW; Bollyky PL; Amanatullah DF
    Clin Orthop Relat Res; 2021 Jul; 479(7):1471-1481. PubMed ID: 33835090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth-dependent drug susceptibility can prevent or enhance spatial expansion of a bacterial population.
    Sinclair P; Carballo-Pacheco M; Allen RJ
    Phys Biol; 2019 Apr; 16(4):046001. PubMed ID: 30909169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device.
    Kim KP; Kim YG; Choi CH; Kim HE; Lee SH; Chang WS; Lee CS
    Lab Chip; 2010 Dec; 10(23):3296-9. PubMed ID: 20938507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.