These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34590271)

  • 1. A Genetic Interaction Screening Approach in C. elegans.
    Calarco JA
    Methods Mol Biol; 2021; 2381():79-95. PubMed ID: 34590271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-mediated genetic interaction profiling identifies RNA binding proteins controlling metazoan fitness.
    Norris AD; Gracida X; Calarco JA
    Elife; 2017 Jul; 6():. PubMed ID: 28718764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic lethal genetic interactions that decrease somatic cell proliferation in Caenorhabditis elegans identify the alternative RFC CTF18 as a candidate cancer drug target.
    McLellan J; O'Neil N; Tarailo S; Stoepel J; Bryan J; Rose A; Hieter P
    Mol Biol Cell; 2009 Dec; 20(24):5306-13. PubMed ID: 19846659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR editing of sftb-1/SF3B1 in Caenorhabditis elegans allows the identification of synthetic interactions with cancer-related mutations and the chemical inhibition of splicing.
    Serrat X; Kukhtar D; Cornes E; Esteve-Codina A; Benlloch H; Cecere G; Cerón J
    PLoS Genet; 2019 Oct; 15(10):e1008464. PubMed ID: 31634348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9 human gene replacement and phenomic characterization in
    McDiarmid TA; Au V; Loewen AD; Liang J; Mizumoto K; Moerman DG; Rankin CH
    Dis Model Mech; 2018 Nov; 11(12):. PubMed ID: 30361258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and Efficient Identification of Caenorhabditis elegans Legacy Mutations Using Hawaiian SNP-Based Mapping and Whole-Genome Sequencing.
    Jaramillo-Lambert A; Fuchsman AS; Fabritius AS; Smith HE; Golden A
    G3 (Bethesda); 2015 Mar; 5(5):1007-19. PubMed ID: 25740937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans.
    Singh J
    Mol Genet Genomics; 2021 Jan; 296(1):1-20. PubMed ID: 32888055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes.
    Zugasti O; Thakur N; Belougne J; Squiban B; Kurz CL; Soulé J; Omi S; Tichit L; Pujol N; Ewbank JJ
    BMC Biol; 2016 Apr; 14():35. PubMed ID: 27129311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A global analysis of genetic interactions in Caenorhabditis elegans.
    Byrne AB; Weirauch MT; Wong V; Koeva M; Dixon SJ; Stuart JM; Roy PJ
    J Biol; 2007; 6(3):8. PubMed ID: 17897480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput capturing and characterization of mutations in essential genes of Caenorhabditis elegans.
    Chu JS; Chua SY; Wong K; Davison AM; Johnsen R; Baillie DL; Rose AM
    BMC Genomics; 2014 May; 15(1):361. PubMed ID: 24884423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Efficient Genome Editing Strategy To Generate Putative Null Mutants in
    Wang H; Park H; Liu J; Sternberg PW
    G3 (Bethesda); 2018 Nov; 8(11):3607-3616. PubMed ID: 30224336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans.
    Kim H; Ishidate T; Ghanta KS; Seth M; Conte D; Shirayama M; Mello CC
    Genetics; 2014 Aug; 197(4):1069-80. PubMed ID: 24879462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggrephagy: lessons from C. elegans.
    Lu Q; Wu F; Zhang H
    Biochem J; 2013 Jun; 452(3):381-90. PubMed ID: 23725457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans.
    McClendon TB; Sullivan MR; Bernstein KA; Yanowitz JL
    Genetics; 2016 May; 203(1):133-45. PubMed ID: 26936927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a Sibling Subtraction Method for Identifying Causal Mutations in
    Joseph BB; Blouin NA; Fay DS
    G3 (Bethesda); 2018 Feb; 8(2):669-678. PubMed ID: 29237702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting genetic interactions with random walks on biological networks.
    Chipman KC; Singh AK
    BMC Bioinformatics; 2009 Jan; 10():17. PubMed ID: 19138426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pathogenesis assay using Saccharomyces cerevisiae and Caenorhabditis elegans reveals novel roles for yeast AP-1, Yap1, and host dual oxidase BLI-3 in fungal pathogenesis.
    Jain C; Yun M; Politz SM; Rao RP
    Eukaryot Cell; 2009 Aug; 8(8):1218-27. PubMed ID: 19502579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Screen for Genes Involved in
    Huang H; Zhu CT; Skuja LL; Hayden DJ; Hart AC
    G3 (Bethesda); 2017 Sep; 7(9):2907-2917. PubMed ID: 28743807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C. elegans screen identifies autophagy genes specific to multicellular organisms.
    Tian Y; Li Z; Hu W; Ren H; Tian E; Zhao Y; Lu Q; Huang X; Yang P; Li X; Wang X; Kovács AL; Yu L; Zhang H
    Cell; 2010 Jun; 141(6):1042-55. PubMed ID: 20550938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional genomic approaches using the nematode Caenorhabditis elegans as a model system.
    Lee J; Nam S; Hwang SB; Hong M; Kwon JY; Joeng KS; Im SH; Shim J; Park MC
    J Biochem Mol Biol; 2004 Jan; 37(1):107-13. PubMed ID: 14761308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.