BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34590401)

  • 1. One-Step Enzymatic Labeling Reveals a Critical Role of O-GlcNAcylation in Cell-Cycle Progression and DNA Damage Response.
    Tian Y; Zhu Q; Sun Z; Geng D; Lin B; Su X; He J; Guo M; Xu H; Zhao Y; Qin W; Wang PG; Wen L; Yi W
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26128-26135. PubMed ID: 34590401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated.
    Zhang S; Roche K; Nasheuer HP; Lowndes NF
    J Biol Chem; 2011 Oct; 286(43):37483-95. PubMed ID: 21896475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of structural and functional O-linked N-acetylglucosamine-bearing proteins in Xenopus laevis oocyte.
    Dehennaut V; Slomianny MC; Page A; Vercoutter-Edouart AS; Jessus C; Michalski JC; Vilain JP; Bodart JF; Lefebvre T
    Mol Cell Proteomics; 2008 Nov; 7(11):2229-45. PubMed ID: 18617508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Isotope-Coded Photocleavable Probe for Quantitative Profiling of Protein O-GlcNAcylation.
    Li J; Li Z; Duan X; Qin K; Dang L; Sun S; Cai L; Hsieh-Wilson LC; Wu L; Yi W
    ACS Chem Biol; 2019 Jan; 14(1):4-10. PubMed ID: 30620550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and Site-Specific Chemoproteomic Profiling of Protein O-GlcNAcylation in the Cell Cycle.
    Liu J; Hao Y; He Y; Li X; Sun DE; Zhang Y; Yang PY; Chen X
    ACS Chem Biol; 2021 Oct; 16(10):1917-1923. PubMed ID: 34161081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O-GlcNAc modification affects the ATM-mediated DNA damage response.
    Miura Y; Sakurai Y; Endo T
    Biochim Biophys Acta; 2012 Oct; 1820(10):1678-85. PubMed ID: 22759405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OGT mediated histone H2B S112 GlcNAcylation regulates DNA damage response.
    Wang P; Peng C; Liu X; Liu H; Chen Y; Zheng L; Han B; Pei H
    J Genet Genomics; 2015 Sep; 42(9):467-75. PubMed ID: 26408091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates.
    Craggs TD; Hutton RD; Brenlla A; White MF; Penedo JC
    Nucleic Acids Res; 2014 Feb; 42(3):1857-72. PubMed ID: 24234453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Chemoenzymatic Method Based on Easily Accessible Enzymes for Profiling Protein O-GlcNAcylation.
    Xu S; Sun F; Wu R
    Anal Chem; 2020 Jul; 92(14):9807-9814. PubMed ID: 32574038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex.
    Raj R; Lercher L; Mohammed S; Davis BG
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8918-22. PubMed ID: 27272618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative time-resolved chemoproteomics reveals that stable
    Qin W; Lv P; Fan X; Quan B; Zhu Y; Qin K; Chen Y; Wang C; Chen X
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6749-E6758. PubMed ID: 28760965
    [No Abstract]   [Full Text] [Related]  

  • 12. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose.
    Hu Y; Suarez J; Fricovsky E; Wang H; Scott BT; Trauger SA; Han W; Hu Y; Oyeleye MO; Dillmann WH
    J Biol Chem; 2009 Jan; 284(1):547-555. PubMed ID: 19004814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and identification of protein O-GlcNAcylation sites with substrate specificity.
    Wu HY; Lu CT; Kao HJ; Chen YJ; Chen YJ; Lee TY
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S1. PubMed ID: 25521204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods.
    Cao W; Cao J; Huang J; Yao J; Yan G; Xu H; Yang P
    PLoS One; 2013; 8(10):e76399. PubMed ID: 24098488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OGT restrains the expansion of DNA damage signaling.
    Chen Q; Yu X
    Nucleic Acids Res; 2016 Nov; 44(19):9266-9278. PubMed ID: 27458206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins.
    Kubota Y; Fujioka K; Takekawa M
    PLoS One; 2017; 12(7):e0180714. PubMed ID: 28686627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O-GlcNAcylation of amyloid-β precursor protein at threonine 576 residue regulates trafficking and processing.
    Chun YS; Kwon OH; Chung S
    Biochem Biophys Res Commun; 2017 Aug; 490(2):486-491. PubMed ID: 28624365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Selective Enrichment and a Boosting Approach to Globally and Site-Specifically Characterize Protein Co-translational
    Xu S; Yin K; Wu R
    Anal Chem; 2023 Mar; 95(9):4371-4380. PubMed ID: 36802545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUMO-1 modification of FEN1 facilitates its interaction with Rad9-Rad1-Hus1 to counteract DNA replication stress.
    Xu X; Shi R; Zheng L; Guo Z; Wang L; Zhou M; Zhao Y; Tian B; Truong K; Chen Y; Shen B; Hua Y; Xu H
    J Mol Cell Biol; 2018 Oct; 10(5):460-474. PubMed ID: 30184152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation.
    Wang Z; Pandey A; Hart GW
    Mol Cell Proteomics; 2007 Aug; 6(8):1365-79. PubMed ID: 17507370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.