These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 34590825)
1. A Three-in-One Strategy: Injectable Biomimetic Porous Hydrogels for Accelerating Bone Regeneration via Shape-Adaptable Scaffolds, Controllable Magnesium Ion Release, and Enhanced Osteogenic Differentiation. Zhou H; Yu K; Jiang H; Deng R; Chu L; Cao Y; Zheng Y; Lu W; Deng Z; Liang B Biomacromolecules; 2021 Nov; 22(11):4552-4568. PubMed ID: 34590825 [TBL] [Abstract][Full Text] [Related]
2. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Yuan Z; Wei P; Huang Y; Zhang W; Chen F; Zhang X; Mao J; Chen D; Cai Q; Yang X Acta Biomater; 2019 Feb; 85():294-309. PubMed ID: 30553873 [TBL] [Abstract][Full Text] [Related]
3. Magnesium Oxide Nanoparticle Coordinated Phosphate-Functionalized Chitosan Injectable Hydrogel for Osteogenesis and Angiogenesis in Bone Regeneration. Chen Y; Sheng W; Lin J; Fang C; Deng J; Zhang P; Zhou M; Liu P; Weng J; Yu F; Wang D; Kang B; Zeng H ACS Appl Mater Interfaces; 2022 Feb; 14(6):7592-7608. PubMed ID: 35119809 [TBL] [Abstract][Full Text] [Related]
4. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. Wang B; Liu J; Niu D; Wu N; Yun W; Wang W; Zhang K; Li G; Yan S; Xu G; Yin J ACS Appl Mater Interfaces; 2021 Jul; 13(28):32673-32689. PubMed ID: 34227792 [TBL] [Abstract][Full Text] [Related]
5. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
6. In situ gas foaming based on magnesium particle degradation: A novel approach to fabricate injectable macroporous hydrogels. Tang Y; Lin S; Yin S; Jiang F; Zhou M; Yang G; Sun N; Zhang W; Jiang X Biomaterials; 2020 Feb; 232():119727. PubMed ID: 31918223 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
9. Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration Tang Y; Tong X; Conrad B; Yang F Theranostics; 2020; 10(13):6035-6047. PubMed ID: 32483436 [No Abstract] [Full Text] [Related]
10. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148 [TBL] [Abstract][Full Text] [Related]
11. Nano-Silicate-Reinforced and SDF-1α-Loaded Gelatin-Methacryloyl Hydrogel for Bone Tissue Engineering. Shi Z; Xu Y; Mulatibieke R; Zhong Q; Pan X; Chen Y; Lian Q; Luo X; Shi Z; Zhu Q Int J Nanomedicine; 2020; 15():9337-9353. PubMed ID: 33262591 [TBL] [Abstract][Full Text] [Related]
12. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
13. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Gan M; Zhou Q; Ge J; Zhao J; Wang Y; Yan Q; Wu C; Yu H; Xiao Q; Wang W; Yang H; Zou J Acta Biomater; 2021 Nov; 135():289-303. PubMed ID: 34474179 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
16. The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. Liu C; Wu J; Gan D; Li Z; Shen J; Tang P; Luo S; Li P; Lu X; Zheng W J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1814-1825. PubMed ID: 31774242 [TBL] [Abstract][Full Text] [Related]
17. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. Chen R; Chen HB; Xue PP; Yang WG; Luo LZ; Tong MQ; Zhong B; Xu HL; Zhao YZ; Yuan JD J Mater Chem B; 2021 Jan; 9(4):1107-1122. PubMed ID: 33427267 [TBL] [Abstract][Full Text] [Related]
18. Development of a simvastatin loaded injectable porous scaffold in situ formed by phase inversion method for bone tissue regeneration. Hajihasani Biouki M; Mobedi H; Karkhaneh A; Daliri Joupari M Int J Artif Organs; 2019 Feb; 42(2):72-79. PubMed ID: 30482084 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration. Hou S; Niu X; Li L; Zhou J; Qian Z; Yao D; Yang F; Ma PX; Fan Y Biomaterials; 2019 Dec; 223():119458. PubMed ID: 31491598 [TBL] [Abstract][Full Text] [Related]
20. A simple hydrogel scaffold with injectability, adhesivity and osteogenic activity for bone regeneration. Zhang H; Cai Q; Zhu Y; Zhu W Biomater Sci; 2021 Feb; 9(3):960-972. PubMed ID: 33559657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]