These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 34590837)
1. Optimizing the Electronic Structure of ZnS via Cobalt Surface Doping for Promoted Photocatalytic Hydrogen Production. Bao L; Dong Y; Dai C; Xu G; Yang Y; Liu X; Ma D; Jia Y; Zeng C Inorg Chem; 2021 Oct; 60(20):15712-15723. PubMed ID: 34590837 [TBL] [Abstract][Full Text] [Related]
2. Black Trumpet Mushroom-like ZnS incorporated with Cu Rameshbabu R; Ravi P; Pecchi G; Delgado EJ; Mangalaraja RV; Sathish M J Colloid Interface Sci; 2021 May; 590():82-93. PubMed ID: 33524723 [TBL] [Abstract][Full Text] [Related]
3. Modulating the doping state of transition metal ions in ZnS for enhanced photocatalytic activity. Bao L; Ren X; Liu C; Liu X; Dai C; Yang Y; Bououdina M; Ali S; Zeng C Chem Commun (Camb); 2023 Sep; 59(75):11280-11283. PubMed ID: 37665259 [TBL] [Abstract][Full Text] [Related]
4. Enhanced activity of ZnS (111) by N/Cu co-doping: Accelerated degradation of organic pollutants under visible light. Jiang G; Zhu B; Sun J; Liu F; Wang Y; Zhao C J Environ Sci (China); 2023 Mar; 125():244-257. PubMed ID: 36375910 [TBL] [Abstract][Full Text] [Related]
5. Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production. Guo C; Tian K; Wang L; Liang F; Wang F; Chen D; Ning J; Zhong Y; Hu Y J Colloid Interface Sci; 2021 Feb; 583():661-671. PubMed ID: 33039863 [TBL] [Abstract][Full Text] [Related]
6. An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS. Zhou Y; Chen G; Yu Y; Feng Y; Zheng Y; He F; Han Z Phys Chem Chem Phys; 2015 Jan; 17(3):1870-6. PubMed ID: 25474654 [TBL] [Abstract][Full Text] [Related]
7. Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H Huang H; Dai B; Wang W; Lu C; Kou J; Ni Y; Wang L; Xu Z Nano Lett; 2017 Jun; 17(6):3803-3808. PubMed ID: 28540718 [TBL] [Abstract][Full Text] [Related]
8. Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Wang Y; Chen J; Liu L; Xi X; Li Y; Geng Z; Jiang G; Zhao Z Nanoscale; 2019 Jan; 11(4):1618-1625. PubMed ID: 30306173 [TBL] [Abstract][Full Text] [Related]
9. Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution on Phosphorus-Doped Covalent Triazine-Based Frameworks. Cheng Z; Fang W; Zhao T; Fang S; Bi J; Liang S; Li L; Yu Y; Wu L ACS Appl Mater Interfaces; 2018 Dec; 10(48):41415-41421. PubMed ID: 30383354 [TBL] [Abstract][Full Text] [Related]
10. Constructing a novel family of halogen-doped covalent triazine-based frameworks as efficient metal-free photocatalysts for hydrogen production. Cheng Z; Zheng K; Lin G; Fang S; Li L; Bi J; Shen J; Wu L Nanoscale Adv; 2019 Jul; 1(7):2674-2680. PubMed ID: 36132739 [TBL] [Abstract][Full Text] [Related]
11. Effect of trap states on photocatalytic properties of boron-doped anatase TiO Du Y; Wang Z; Chen H; Wang HY; Liu G; Weng Y Phys Chem Chem Phys; 2019 Feb; 21(8):4349-4358. PubMed ID: 30724275 [TBL] [Abstract][Full Text] [Related]
12. Excellent Charge Separation of NCQDs/ZnS Nanocomposites for the Promotion of Photocatalytic H Wu P; Liu H; Xie Z; Xie L; Liu G; Xu Y; Chen J; Lu CZ ACS Appl Mater Interfaces; 2024 Apr; 16(13):16601-16611. PubMed ID: 38502203 [TBL] [Abstract][Full Text] [Related]
14. Localized nano-solid-solution induced by Cu doping in ZnS for efficient solar hydrogen generation. Li N; Zhang L; Zhou J; Jing D; Sun Y Dalton Trans; 2014 Aug; 43(30):11533-41. PubMed ID: 24875006 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous Morphology and Band Structure Manipulation of BiOBr by Te Doping for Enhanced Photocatalytic Oxygen Evolution. Song J; Ma Y; Zhang Q; Zhang C; Wu X ACS Appl Mater Interfaces; 2023 Dec; 15(51):59444-59453. PubMed ID: 38091379 [TBL] [Abstract][Full Text] [Related]
16. Phosphorus-Doped Single-Crystalline Quaternary Sulfide Nanobelts Enable Efficient Visible-Light Photocatalytic Hydrogen Evolution. Wu L; Su F; Liu T; Liu GQ; Li Y; Ma T; Wang Y; Zhang C; Yang Y; Yu SH J Am Chem Soc; 2022 Nov; 144(45):20620-20629. PubMed ID: 36332107 [TBL] [Abstract][Full Text] [Related]
17. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction. Bang J; Das S; Yu EJ; Kim K; Lim H; Kim S; Hong JW Nano Lett; 2020 Sep; 20(9):6263-6271. PubMed ID: 32813529 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Photocatalytic Hydrogen Evolution over Mo-Doped ZnIn Guan W; Zhang L; Wang P; Wang Y; Wang H; Dong X; Meng M; Sui L; Gan Z; Dong L; Yu L Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432266 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus- and fluorine-co-doped carbon nitride: modulated visible light absorption, charge carrier kinetics and boosted photocatalytic hydrogen evolution. Li P; Wang M; Huang S; Su Y Dalton Trans; 2021 Oct; 50(40):14110-14114. PubMed ID: 34604888 [TBL] [Abstract][Full Text] [Related]
20. Deciphering the Superior Electronic Transmission Induced by the Li-N Ligand Pairs Boosted Photocatalytic Hydrogen Evolution. Geng Z; Bo T; Zhou W; Tan X; Ye J; Yu T Small; 2023 Apr; 19(17):e2206673. PubMed ID: 36703518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]