These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Self-Assembly of Aqueous Soft Matter Patterned by Liquid-Crystal Polymer Networks for Controlling the Dynamics of Bacteria. Dhakal NP; Jiang J; Guo Y; Peng C ACS Appl Mater Interfaces; 2020 Mar; 12(12):13680-13685. PubMed ID: 32118403 [TBL] [Abstract][Full Text] [Related]
4. Optimization of immobilized urease enzyme on porous polymer for enhancing the stability, reusability and enzymatic kinetics using response surface methodology. Sahin B; Ozbey-Unal B; Dizge N; Keskinler B; Balcik C Colloids Surf B Biointerfaces; 2024 Aug; 240():113986. PubMed ID: 38795587 [TBL] [Abstract][Full Text] [Related]
5. Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning. Abadia AV; Herbert KM; White TJ; Schwartz DK; Kaar JL ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35652291 [TBL] [Abstract][Full Text] [Related]
6. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease. Hu QZ; Jang CH Colloids Surf B Biointerfaces; 2011 Dec; 88(2):622-6. PubMed ID: 21846586 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of urease from pigeonpea (Cajanus cajan) on agar tablets and its application in urea assay. Mulagalapalli S; Kumar S; Kalathur RC; Kayastha AM Appl Biochem Biotechnol; 2007 Sep; 142(3):291-7. PubMed ID: 18025589 [TBL] [Abstract][Full Text] [Related]
12. Microstructural and potential dependence studies of urease-immobilized gold nanoparticles-polypyrrole composite film for urea detection. Rajesh ; Puri N; Mishra SK; Laskar MJ; Srivastava AK Appl Biochem Biotechnol; 2014 Jan; 172(2):1055-69. PubMed ID: 24142354 [TBL] [Abstract][Full Text] [Related]
13. Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. McConney ME; Martinez A; Tondiglia VP; Lee KM; Langley D; Smalyukh II; White TJ Adv Mater; 2013 Nov; 25(41):5880-5. PubMed ID: 23873775 [TBL] [Abstract][Full Text] [Related]
14. Modification and characterization of cellulosic cotton fibers for efficient immobilization of urease. Monier M; El-Sokkary AM Int J Biol Macromol; 2012; 51(1-2):18-24. PubMed ID: 22564966 [TBL] [Abstract][Full Text] [Related]
15. Biochemo-mechanical function of urease-loaded gels. Kokufuta E; Zhang YQ; Tanaka T J Biomater Sci Polym Ed; 1994; 6(1):35-40. PubMed ID: 7947471 [TBL] [Abstract][Full Text] [Related]
16. Conjugated polymers nanostructured as smart interfaces for controlling the catalytic properties of enzymes. Barbosa CG; Caseli L; Péres LO J Colloid Interface Sci; 2016 Aug; 476():206-213. PubMed ID: 27232536 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of V da Rocha RCF; de Souza FA; Vieira NS; Cestarolli DT; Guerra EM Biotechnol Appl Biochem; 2021 Oct; 68(5):1027-1032. PubMed ID: 32915456 [TBL] [Abstract][Full Text] [Related]
18. [X-ray microanalysis of the activity of immobilized urease on chitosan membrane]. Ma XL; Yao ZH Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Mar; 25(3):456-9. PubMed ID: 16013332 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible magnetic nanoparticles grafted by poly(carboxybetaine acrylamide) for enzyme immobilization. Zhang L; Du Y; Song J; Qi H Int J Biol Macromol; 2018 Oct; 118(Pt A):1004-1012. PubMed ID: 29969641 [TBL] [Abstract][Full Text] [Related]
20. Urease immobilized on modified polysulphone membrane: preparation and properties. Poźniak G; Krajewska B; Trochimczuk W Biomaterials; 1995 Jan; 16(2):129-34. PubMed ID: 7734646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]