BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34591012)

  • 1. Adaptation and compensation in a bacterial gene regulatory network evolving under antibiotic selection.
    Patel V; Matange N
    Elife; 2021 Sep; 10():. PubMed ID: 34591012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge.
    Matange N
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31740490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A trimethoprim derivative impedes antibiotic resistance evolution.
    Manna MS; Tamer YT; Gaszek I; Poulides N; Ahmed A; Wang X; Toprak FCR; Woodard DR; Koh AY; Williams NS; Borek D; Atilgan AR; Hulleman JD; Atilgan C; Tambar U; Toprak E
    Nat Commun; 2021 May; 12(1):2949. PubMed ID: 34011959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of trimethoprim resistance in Escherichia coli.
    Watson M; Liu JW; Ollis D
    FEBS J; 2007 May; 274(10):2661-71. PubMed ID: 17451440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integron-Associated DfrB4, a Previously Uncharacterized Member of the Trimethoprim-Resistant Dihydrofolate Reductase B Family, Is a Clinically Identified Emergent Source of Antibiotic Resistance.
    Toulouse JL; Edens TJ; Alejaldre L; Manges AR; Pelletier JN
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28242670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical principles predict fitness landscapes of drug resistance.
    Rodrigues JV; Bershtein S; Li A; Lozovsky ER; Hartl DL; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):E1470-8. PubMed ID: 26929328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Trimethoprim Resistance Gene,
    Wüthrich D; Brilhante M; Hausherr A; Becker J; Meylan M; Perreten V
    mSphere; 2019 May; 4(3):. PubMed ID: 31068437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence of dihydrofolate reductase genes from trimethoprim-resistant mutants of Escherichia coli. Evidence that dihydrofolate reductase interacts with another essential gene product.
    Smith DR; Calvo JM
    Mol Gen Genet; 1982; 187(1):72-8. PubMed ID: 6761546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of antibacterial compounds that constrain evolutionary pathways to resistance.
    Zhang Y; Chowdhury S; Rodrigues JV; Shakhnovich E
    Elife; 2021 Jul; 10():. PubMed ID: 34279221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection.
    Toprak E; Veres A; Michel JB; Chait R; Hartl DL; Kishony R
    Nat Genet; 2011 Dec; 44(1):101-5. PubMed ID: 22179135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimethoprim-resistant Shigella and enterotoxigenic Escherichia coli strains in children in Thailand.
    Chatkaeomorakot A; Echeverria P; Taylor DN; Seriwatana J; Leksomboon U
    Pediatr Infect Dis J; 1987 Aug; 6(8):735-9. PubMed ID: 3313233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth-mediated negative feedback shapes quantitative antibiotic response.
    Angermayr SA; Pang TY; Chevereau G; Mitosch K; Lercher MJ; Bollenbach T
    Mol Syst Biol; 2022 Sep; 18(9):e10490. PubMed ID: 36124745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques.
    Vickers AA; Potter NJ; Fishwick CW; Chopra I; O'Neill AJ
    J Antimicrob Chemother; 2009 Jun; 63(6):1112-7. PubMed ID: 19383727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Resistance to Folate Pathway Inhibitors in
    Podnecky NL; Rhodes KA; Mima T; Drew HR; Chirakul S; Wuthiekanun V; Schupp JM; Sarovich DS; Currie BJ; Keim P; Schweizer HP
    mBio; 2017 Sep; 8(5):. PubMed ID: 28874476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory changes in the formation of chromosomal dihydrofolate reductase causing resistance to trimethoprim.
    Flensburg J; Sköld O
    J Bacteriol; 1984 Jul; 159(1):184-90. PubMed ID: 6330028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection.
    Tamer YT; Gaszek IK; Abdizadeh H; Batur TA; Reynolds KA; Atilgan AR; Atilgan C; Toprak E
    Mol Biol Evol; 2019 Jul; 36(7):1533-1550. PubMed ID: 30982891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The induction of trimethoprim resistance encoded by the type IV dihydrofolate reductase gene.
    Young HK; Thomson CJ; Amyes SG
    J Med Microbiol; 1993 Apr; 38(4):256-61. PubMed ID: 8474117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a staphylococcal trimethoprim resistance gene and its product.
    Coughter JP; Johnston JL; Archer GL
    Antimicrob Agents Chemother; 1987 Jul; 31(7):1027-32. PubMed ID: 2821886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification.
    Laehnemann D; Peña-Miller R; Rosenstiel P; Beardmore R; Jansen G; Schulenburg H
    Genome Biol Evol; 2014 May; 6(6):1287-301. PubMed ID: 24850796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.