These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 34591047)
1. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Li Q; Li Z; Fu Y; Clarot I; Boudier A; Chen Z Analyst; 2021 Oct; 146(21):6643-6649. PubMed ID: 34591047 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of crystalline covalent organic framework as stationary phase for capillary electrochromatography. Li Q; Li Z; Fu Y; Hu C; Chen Z J Chromatogr A; 2022 Jun; 1673():463070. PubMed ID: 35526299 [TBL] [Abstract][Full Text] [Related]
3. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. Fu Y; Li Z; Li Q; Hu C; Liu Y; Sun W; Chen Z J Chromatogr A; 2021 Jul; 1649():462239. PubMed ID: 34034110 [TBL] [Abstract][Full Text] [Related]
4. In-situ immobilization of covalent organic frameworks as stationary phase for capillary electrochromatography. Fu Y; Li Z; Hu C; Li Q; Chen Z J Chromatogr A; 2023 Aug; 1705():464205. PubMed ID: 37442070 [TBL] [Abstract][Full Text] [Related]
5. He N; Li Z; Hu C; Chen Z J Pharm Anal; 2022 Aug; 12(4):610-616. PubMed ID: 36105161 [TBL] [Abstract][Full Text] [Related]
6. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Kong D; Chen Z Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854 [TBL] [Abstract][Full Text] [Related]
7. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation. Li Z; Liao Z; Hu J; Chen Z J Chromatogr A; 2023 Apr; 1694():463905. PubMed ID: 36881971 [TBL] [Abstract][Full Text] [Related]
8. [Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography]. Zhao L; Lü W; Niu X; Pan C; Chen H; Chen X Se Pu; 2020 Sep; 38(9):1095-1101. PubMed ID: 34213276 [TBL] [Abstract][Full Text] [Related]
9. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Sun W; Liu Y; Zhou W; Li Z; Chen Z Talanta; 2021 Aug; 230():122330. PubMed ID: 33934787 [TBL] [Abstract][Full Text] [Related]
10. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. Bao T; Tang P; Kong D; Mao Z; Chen Z J Chromatogr A; 2016 May; 1445():140-8. PubMed ID: 27062718 [TBL] [Abstract][Full Text] [Related]
11. In situ growth of Zr-based metal-organic framework UiO-66-NH Tang P; Wang R; Chen Z Electrophoresis; 2018 Oct; 39(20):2619-2625. PubMed ID: 29660144 [TBL] [Abstract][Full Text] [Related]
12. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. Niu X; Ding S; Wang W; Xu Y; Xu Y; Chen H; Chen X J Chromatogr A; 2016 Mar; 1436():109-17. PubMed ID: 26858115 [TBL] [Abstract][Full Text] [Related]
13. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive. Gao L; Zhao X; Qin S; Dong Q; Hu X; Chu H Chirality; 2022 Mar; 34(3):537-549. PubMed ID: 34997664 [TBL] [Abstract][Full Text] [Related]
14. An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography. Zhao L; Lv W; Niu X; Pan C; Chen H; Chen X J Chromatogr A; 2020 Mar; 1615():460722. PubMed ID: 31780079 [TBL] [Abstract][Full Text] [Related]
15. [Recent developments in the application of covalent organic frameworks in capillary electrochromatography]. Wang GX; Chen YL; Lü WJ; Chen HL; Chen XG Se Pu; 2023 Oct; 41(10):835-842. PubMed ID: 37875406 [TBL] [Abstract][Full Text] [Related]
16. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for capillary electrochromatography. Li Z; Liao Z; Ding X; Hu J; Chen Z J Chromatogr A; 2024 Feb; 1716():464626. PubMed ID: 38232637 [TBL] [Abstract][Full Text] [Related]
17. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. Xu YY; Lv WJ; Ren CL; Niu XY; Chen HL; Chen XG J Chromatogr A; 2018 Jan; 1532():223-231. PubMed ID: 29203115 [TBL] [Abstract][Full Text] [Related]
18. A lipase-based chiral stationary phase for direct chiral separation in capillary electrochromatography. Li Z; Li Q; Fu Y; Hu C; Liu Y; Li W; Chen Z Talanta; 2021 Oct; 233():122488. PubMed ID: 34215110 [TBL] [Abstract][Full Text] [Related]
19. Fluoro-functionalized stationary phases for electrochromatographic separation of organic fluorides. Li Z; Mao Z; Hu C; Li Q; Chen Z J Chromatogr A; 2020 Aug; 1625():461269. PubMed ID: 32709321 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of a covalent organic framework with hydrazine linkages and its application in open-tubular capillary electrochromatography. Wang F; Zhang Y; Wang G; Qi S; Lv W; Liu J; Chen H; Chen X J Chromatogr A; 2022 Jan; 1661():462681. PubMed ID: 34856505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]